Identification of genes associated with sex expression and sex determination in hemp (Cannabis sativa L.).

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2025-01-01 DOI:10.1093/jxb/erae429
Jiaqi Shi, Matteo Toscani, Caroline A Dowling, Susanne Schilling, Rainer Melzer
{"title":"Identification of genes associated with sex expression and sex determination in hemp (Cannabis sativa L.).","authors":"Jiaqi Shi, Matteo Toscani, Caroline A Dowling, Susanne Schilling, Rainer Melzer","doi":"10.1093/jxb/erae429","DOIUrl":null,"url":null,"abstract":"<p><p>Dioecy in flowering plants has evolved independently many times, and thus the genetic mechanisms underlying sex determination are diverse. In hemp (Cannabis sativa), sex is controlled by a pair of sex chromosomes (XX for females and XY for males). In an attempt to understand the molecular mechanism responsible for sex expression in hemp plants, we carried out RNA sequencing of male and female plants at different developmental stages. Using a pipeline involving differential gene expression analysis and weighted gene co-expression network analysis, we identified genes important for male and female flower development. We also demonstrate that sex-biased expression is already established at very early vegetative stages, before the onset of reproductive development, and identify several genes encoding transcription factors of the REM, bZIP, and MADS families as candidate sex-determination genes in hemp. Our findings demonstrate that the gene regulatory networks governing male and female development in hemp diverge at a very early stage, leading to profound morphological differences between male and female hemp plants.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"175-190"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae429","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dioecy in flowering plants has evolved independently many times, and thus the genetic mechanisms underlying sex determination are diverse. In hemp (Cannabis sativa), sex is controlled by a pair of sex chromosomes (XX for females and XY for males). In an attempt to understand the molecular mechanism responsible for sex expression in hemp plants, we carried out RNA sequencing of male and female plants at different developmental stages. Using a pipeline involving differential gene expression analysis and weighted gene co-expression network analysis, we identified genes important for male and female flower development. We also demonstrate that sex-biased expression is already established at very early vegetative stages, before the onset of reproductive development, and identify several genes encoding transcription factors of the REM, bZIP, and MADS families as candidate sex-determination genes in hemp. Our findings demonstrate that the gene regulatory networks governing male and female development in hemp diverge at a very early stage, leading to profound morphological differences between male and female hemp plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鉴定大麻(Cannabis sativa L.)中与性别表达和性别决定相关的基因。
有花植物的雌雄异体经历了多次独立进化,因此性别决定的遗传机制也多种多样。在大麻(Cannabis sativa)中,性别由一对性染色体(雌性为 XX,雄性为 XY)控制。为了了解大麻植物性别表达的分子机制,我们对不同发育阶段的雌雄植物进行了 RNA 序列分析。通过差异基因表达分析和加权基因共表达网络分析,我们发现了对雌雄花发育很重要的基因。我们还证明,在生殖发育开始之前,性别偏向表达已经在很早的无性系阶段建立起来,而编码 REM、bZIP 和 MADS 家族转录因子的几个基因是大麻中候选的性别决定基因。我们的研究结果表明,管理大麻雌雄发育的基因调控网络在很早的阶段就已经出现分歧,从而导致雌雄大麻植株在形态上的深刻差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Conserved and novel roles of the bHLH transcription factor SPATULA in tomato. Long-day induced flowering requires DNA hypermethylation in orchardgrass. DNA methylation dynamics in the shoot apical meristem. Nitric oxide as integral element in priming- induced tolerance and plant stress memory. Tissue-specific responses of the central carbon metabolism in tomato fruit to low oxygen stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1