{"title":"NAT10 functions as a pivotal regulator in gastric cancer metastasis and tumor immunity.","authors":"Yuqian Mo, Enyu Huang, Chao Deng, Haofeng Huang, Ying Zhu, Xinlong Wei, Jinlin Zhong, Yuzhi Wang, Zhigang Huang, Jingjing Zhang","doi":"10.1002/jcp.31474","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) presents a significant global health burden, with metastasis being the leading cause of treatment failure and mortality. NAT10, a regulatory protein involved in mRNA acetylation, has been implicated in various cancers. However, its role in GC, especially concerning metastasis and immune interactions, remains unclear. Utilizing multi-omics data from gastric cancer samples, we conducted comprehensive analyses to investigate NAT10 expression, its correlation with clinical parameters and immune relevance. Bioinformatics analysis and digital image processing were employed for this purpose. Furthermore, in vitro and in vivo experiments were conducted to elucidate the functional role of NAT10 in gastric cancer progression, aiming to provide deeper biological insights. Our findings reveal a significant association between NAT10 expression and various aspects of transcriptional, protein, as well as tumor immunity in GC patients. Additionally, we demonstrated that NAT10 promotes gastric cancer cell proliferation and migration, both in cellular models and in animal studies, suggesting its involvement in early tumor microvascular metastasis. NAT10 emerges as a promising molecular target, offering potential avenues for further research into molecular mechanisms and therapeutic strategies for GC.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gastric cancer (GC) presents a significant global health burden, with metastasis being the leading cause of treatment failure and mortality. NAT10, a regulatory protein involved in mRNA acetylation, has been implicated in various cancers. However, its role in GC, especially concerning metastasis and immune interactions, remains unclear. Utilizing multi-omics data from gastric cancer samples, we conducted comprehensive analyses to investigate NAT10 expression, its correlation with clinical parameters and immune relevance. Bioinformatics analysis and digital image processing were employed for this purpose. Furthermore, in vitro and in vivo experiments were conducted to elucidate the functional role of NAT10 in gastric cancer progression, aiming to provide deeper biological insights. Our findings reveal a significant association between NAT10 expression and various aspects of transcriptional, protein, as well as tumor immunity in GC patients. Additionally, we demonstrated that NAT10 promotes gastric cancer cell proliferation and migration, both in cellular models and in animal studies, suggesting its involvement in early tumor microvascular metastasis. NAT10 emerges as a promising molecular target, offering potential avenues for further research into molecular mechanisms and therapeutic strategies for GC.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.