Kjellmaniella crassifolia Reduces Lipopolysaccharide-Induced Inflammation in Caco-2 Cells and Ameliorates Loperamide-Induced Constipation in Mice.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-10-01 DOI:10.4014/jmb.2407.07036
Kirinde Gedara Isuru Sandanuwan Kirindage, Arachchige Maheshika Kumari Jayasinghe, Mi-Soon Jang, Ka-Jung Lee, Hyun-Jung Yun, Ginnae Ahn, Jae-Young Oh
{"title":"<i>Kjellmaniella crassifolia</i> Reduces Lipopolysaccharide-Induced Inflammation in Caco-2 Cells and Ameliorates Loperamide-Induced Constipation in Mice.","authors":"Kirinde Gedara Isuru Sandanuwan Kirindage, Arachchige Maheshika Kumari Jayasinghe, Mi-Soon Jang, Ka-Jung Lee, Hyun-Jung Yun, Ginnae Ahn, Jae-Young Oh","doi":"10.4014/jmb.2407.07036","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal disorders are widespread globally, with inflammatory diseases being particularly prominent. This study aimed to investigate the effect of <i>Kjellmaniella crassifolia</i> hot water extract (KCH) on lipopolysaccharide (LPS)-induced inflammation in human intestinal epithelial (Caco-2) cells and loperamide-induced constipation in BALB/c mice. The study's findings revealed that KCH dose-dependently increased the cell viability and reduced the NO production by decreasing the iNOS and COX-2 expression in LPS-stimulated Caco-2 cells. Also, KCH downregulated the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) by regulating the activation of MAPK and NF-κB signaling pathways in LPS-stimulated Caco-2 cells. In addition, KCH increased the expression levels of tight junction proteins, occludin, ZO-1, and claudin-1 in a dose-dependent manner. Furthermore, in vivo study outcomes demonstrated that KCH improved intestinal transit, increased fecal moisture content, and reduced fecal impaction in constipated mice. KCH decreased the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), thereby increasing the expression levels of intestinal tight junction proteins (occludin, ZO-1, and claudin-1) in the small intestine tissues of the experimental mice. These proteins may help regulate intestinal motility and improve stool passage, thus reducing constipation. These findings suggest that KCH could be a promising functional food ingredient for managing intestinal inflammation, inflammation-related disorders, constipation, and the pathophysiology of constipation.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"1-11"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2407.07036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastrointestinal disorders are widespread globally, with inflammatory diseases being particularly prominent. This study aimed to investigate the effect of Kjellmaniella crassifolia hot water extract (KCH) on lipopolysaccharide (LPS)-induced inflammation in human intestinal epithelial (Caco-2) cells and loperamide-induced constipation in BALB/c mice. The study's findings revealed that KCH dose-dependently increased the cell viability and reduced the NO production by decreasing the iNOS and COX-2 expression in LPS-stimulated Caco-2 cells. Also, KCH downregulated the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) by regulating the activation of MAPK and NF-κB signaling pathways in LPS-stimulated Caco-2 cells. In addition, KCH increased the expression levels of tight junction proteins, occludin, ZO-1, and claudin-1 in a dose-dependent manner. Furthermore, in vivo study outcomes demonstrated that KCH improved intestinal transit, increased fecal moisture content, and reduced fecal impaction in constipated mice. KCH decreased the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), thereby increasing the expression levels of intestinal tight junction proteins (occludin, ZO-1, and claudin-1) in the small intestine tissues of the experimental mice. These proteins may help regulate intestinal motility and improve stool passage, thus reducing constipation. These findings suggest that KCH could be a promising functional food ingredient for managing intestinal inflammation, inflammation-related disorders, constipation, and the pathophysiology of constipation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kjellmaniella crassifolia能减轻脂多糖诱导的Caco-2细胞炎症,并能改善洛哌丁胺诱导的小鼠便秘。
胃肠道疾病在全球普遍存在,其中炎症性疾病尤为突出。本研究旨在探讨 Kjellmaniella crassifolia 热水提取物(KCH)对脂多糖(LPS)诱导的人肠上皮(Caco-2)细胞炎症和洛哌丁胺诱导的 BALB/c 小鼠便秘的影响。研究结果表明,在 LPS 刺激的 Caco-2 细胞中,KCH 可通过降低 iNOS 和 COX-2 的表达,剂量依赖性地提高细胞活力并减少 NO 的产生。同时,KCH 通过调节 LPS 刺激的 Caco-2 细胞中 MAPK 和 NF-κB 信号通路的活化,下调了促炎细胞因子(IL-1β、IL-6、IL-8 和 TNF-α)的 mRNA 表达。此外,KCH 还能以剂量依赖的方式提高紧密连接蛋白、occludin、ZO-1 和 claudin-1 的表达水平。此外,体内研究结果表明,KCH 可改善便秘小鼠的肠道转运,增加粪便水分含量,减少粪便嵌塞。KCH 降低了促炎细胞因子(IL-1β、IL-6、IL-8 和 TNF-α)的 mRNA 表达,从而提高了实验小鼠小肠组织中肠道紧密连接蛋白(occludin、ZO-1 和 claudin-1)的表达水平。这些蛋白可能有助于调节肠道蠕动和改善粪便通过,从而减少便秘。这些研究结果表明,KCH 是一种很有前景的功能性食品配料,可用于控制肠道炎症、炎症相关疾病、便秘以及便秘的病理生理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. Production of Succinic Acid by Metabolically Engineered Actinobacillus succinogenes from Lignocellulosic Hydrolysate Derived from Barley Straw. Conductive Bio-Harvesting Tonic (CBT) with an Anti-Dandruff Effect Enhances Hair Growth by Utilizing Naturally Generated Electric Energy during Human Activities. Novel gnd_v2 Fusion Tag and Engineered TEV Protease Enable Efficient Production of Brazzein. Bacterial Pigments as a Promising Alternative to Synthetic Colorants: From Fundamentals to Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1