Structure-based virtual screening and drug repurposing studies indicate potential inhibitors of bovine papillomavirus E6 oncoprotein.

IF 1.9 4区 医学 Q4 IMMUNOLOGY Microbiology and Immunology Pub Date : 2024-10-28 DOI:10.1111/1348-0421.13178
Lucas Alexandre Barbosa de Oliveira Santos, Marcus Vinicius de Aragão Batista
{"title":"Structure-based virtual screening and drug repurposing studies indicate potential inhibitors of bovine papillomavirus E6 oncoprotein.","authors":"Lucas Alexandre Barbosa de Oliveira Santos, Marcus Vinicius de Aragão Batista","doi":"10.1111/1348-0421.13178","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine papillomavirus type 1 (BPV1) is an oncogenic virus that causes lesions and cancer in infected cattle. Despite being one of the most studied genotypes in the family and occurring in herds worldwide, there are currently no vaccines or drugs for its control. The viral E6 oncoprotein plays a crucial role in infection by this virus, making it a promising target for the development of new therapies. In this regard, we integrated structure-based virtual screening approaches, drug repositioning, and molecular dynamics to identify approved drugs with the potential to inhibit BPV1 E6. Our results reveal that Lumacaftor and MK-3207 are promising candidates for controlling BPV1 infection. The findings of this study may contribute to the development of E6 oncoprotein blockers in an accelerated and cost-effective manner.</p>","PeriodicalId":18679,"journal":{"name":"Microbiology and Immunology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1348-0421.13178","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bovine papillomavirus type 1 (BPV1) is an oncogenic virus that causes lesions and cancer in infected cattle. Despite being one of the most studied genotypes in the family and occurring in herds worldwide, there are currently no vaccines or drugs for its control. The viral E6 oncoprotein plays a crucial role in infection by this virus, making it a promising target for the development of new therapies. In this regard, we integrated structure-based virtual screening approaches, drug repositioning, and molecular dynamics to identify approved drugs with the potential to inhibit BPV1 E6. Our results reveal that Lumacaftor and MK-3207 are promising candidates for controlling BPV1 infection. The findings of this study may contribute to the development of E6 oncoprotein blockers in an accelerated and cost-effective manner.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构的虚拟筛选和药物再利用研究揭示了牛乳头瘤病毒 E6 肿瘤蛋白的潜在抑制剂。
牛乳头瘤病毒 1 型 (BPV1) 是一种致癌病毒,会导致受感染的牛出现病变和癌症。尽管该病毒是研究最多的基因型之一,而且在世界各地的牛群中都有发生,但目前还没有疫苗或药物可用于控制该病毒。病毒 E6 肿瘤蛋白在该病毒感染中起着至关重要的作用,使其成为开发新疗法的一个有希望的靶点。在这方面,我们整合了基于结构的虚拟筛选方法、药物重新定位和分子动力学方法,以确定有可能抑制 BPV1 E6 的已批准药物。我们的研究结果表明,Lumacaftor 和 MK-3207 是有希望控制 BPV1 感染的候选药物。这项研究的结果可能有助于以更快、更具成本效益的方式开发 E6 肿瘤蛋白阻断剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology and Immunology
Microbiology and Immunology 医学-免疫学
CiteScore
5.20
自引率
3.80%
发文量
78
审稿时长
1 months
期刊介绍: Microbiology and Immunology is published in association with Japanese Society for Bacteriology, Japanese Society for Virology, and Japanese Society for Host Defense Research. It is peer-reviewed publication that provides insight into the study of microbes and the host immune, biological and physiological responses. Fields covered by Microbiology and Immunology include:Bacteriology|Virology|Immunology|pathogenic infections in human, animals and plants|pathogenicity and virulence factors such as microbial toxins and cell-surface components|factors involved in host defense, inflammation, development of vaccines|antimicrobial agents and drug resistance of microbes|genomics and proteomics.
期刊最新文献
A Mouse Model of Ovalbumin-Induced Airway Allergy Exhibits Altered Localization of SARS-CoV-2-Susceptible Cells in the Lungs, Which Reflects Omicron BA.5 Infection Dynamics, Viral Mutations, and Immunopathology. Genetic Characterization of a Novel Retron Element Isolated from Vibrio mimicus. Efficient Neutralizing Antibodies Induction by Human Parvovirus B19 Epitope-Presenting Protein Nanoparticles. Lack of Evidence for Transmission of Atypical H-Type Bovine Spongiform Encephalopathy Prions (H-BSE Prions) by Intracranial and Oral Challenges to Nonhuman Primates. Efficacy of an Inactivated Whole-Virus A/Victoria/361/2011 (IVR-165) (H3N2) Influenza Vaccine in Ferrets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1