Mackenzie L Davenport, Amaya Fong, Kaela N Albury, C Spencer Henley-Beasley, Elisabeth R Barton, Malcolm Maden, Maurice S Swanson
{"title":"Spiny mice are primed but fail to regenerate volumetric skeletal muscle loss injuries.","authors":"Mackenzie L Davenport, Amaya Fong, Kaela N Albury, C Spencer Henley-Beasley, Elisabeth R Barton, Malcolm Maden, Maurice S Swanson","doi":"10.1186/s13395-024-00358-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, the African spiny mouse Acomys cahirinus has been shown to regenerate a remarkable array of severe internal and external injuries in the absence of a fibrotic response, including the ability to regenerate full-thickness skin excisions, ear punches, severe kidney injuries, and complete transection of the spinal cord. While skeletal muscle is highly regenerative in adult mammals, Acomys displays superior muscle regeneration properties compared with standard laboratory mice following several injuries, including serial cardiotoxin injections of skeletal muscle and volumetric muscle loss (VML) of the panniculus carnosus muscle following full-thickness excision injuries. VML is an extreme muscle injury defined as the irrecoverable ablation of muscle mass, most commonly resulting from combat injuries or surgical debridement. Barriers to the treatment of VML injury include early and prolonged inflammatory responses that promote fibrotic repair and the loss of structural and mechanical cues that promote muscle regeneration. While the regeneration of the panniculus carnosus in Acomys is impressive, its direct relevance to the study of VML in patients is less clear as this muscle has largely been lost in humans, and, while striated, is not a true skeletal muscle. We therefore sought to test the ability of Acomys to regenerate a skeletal muscle more commonly used in VML injury models.</p><p><strong>Methods: </strong>We performed two different VML injuries of the Acomys tibialis anterior muscle and compared the regenerative response to a standard laboratory mouse strain, Mus C57BL6/J.</p><p><strong>Results: </strong>Neither Acomys nor Mus recovered lost muscle mass or myofiber number within three months following VML injury, and Acomys also failed to recover force production better than Mus. In contrast, Acomys continued to express eMHC within the injured area even three months following injury, whereas Mus ceased expressing eMHC less than one-month post-injury, suggesting that Acomys muscle was primed, but failed, to regenerate.</p><p><strong>Conclusions: </strong>While the panniculus carnosus muscle in Acomys regenerates following VML injury in the context of full-thickness skin excision, this regenerative ability does not translate to regenerative repair of a skeletal muscle.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"26"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-024-00358-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In recent years, the African spiny mouse Acomys cahirinus has been shown to regenerate a remarkable array of severe internal and external injuries in the absence of a fibrotic response, including the ability to regenerate full-thickness skin excisions, ear punches, severe kidney injuries, and complete transection of the spinal cord. While skeletal muscle is highly regenerative in adult mammals, Acomys displays superior muscle regeneration properties compared with standard laboratory mice following several injuries, including serial cardiotoxin injections of skeletal muscle and volumetric muscle loss (VML) of the panniculus carnosus muscle following full-thickness excision injuries. VML is an extreme muscle injury defined as the irrecoverable ablation of muscle mass, most commonly resulting from combat injuries or surgical debridement. Barriers to the treatment of VML injury include early and prolonged inflammatory responses that promote fibrotic repair and the loss of structural and mechanical cues that promote muscle regeneration. While the regeneration of the panniculus carnosus in Acomys is impressive, its direct relevance to the study of VML in patients is less clear as this muscle has largely been lost in humans, and, while striated, is not a true skeletal muscle. We therefore sought to test the ability of Acomys to regenerate a skeletal muscle more commonly used in VML injury models.
Methods: We performed two different VML injuries of the Acomys tibialis anterior muscle and compared the regenerative response to a standard laboratory mouse strain, Mus C57BL6/J.
Results: Neither Acomys nor Mus recovered lost muscle mass or myofiber number within three months following VML injury, and Acomys also failed to recover force production better than Mus. In contrast, Acomys continued to express eMHC within the injured area even three months following injury, whereas Mus ceased expressing eMHC less than one-month post-injury, suggesting that Acomys muscle was primed, but failed, to regenerate.
Conclusions: While the panniculus carnosus muscle in Acomys regenerates following VML injury in the context of full-thickness skin excision, this regenerative ability does not translate to regenerative repair of a skeletal muscle.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.