{"title":"Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting","authors":"Chunlin Tian;Li Li;Kahou Tam;Yebo Wu;Cheng-Zhong Xu","doi":"10.1109/TPDS.2024.3480115","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) enables multiple devices to collaboratively train a shared model while preserving data privacy. Ever-increasing model complexity coupled with limited memory resources on the participating devices severely bottlenecks the deployment of FL in real-world scenarios. Thus, a framework that can effectively break the memory wall while jointly taking into account the hardware and statistical heterogeneity in FL is urgently required. In this article, we propose \n<italic>SmartSplit</i>\n a framework that effectively reduces the memory footprint on the device side while guaranteeing the training progress and model accuracy for heterogeneous FL through model splitting. Towards this end, \n<italic>SmartSplit</i>\n employs a hierarchical structure to adaptively guide the overall training process. In each training round, the central manager, hosted on the server, dynamically selects the participating devices and sets the cutting layer by jointly considering the memory budget, training capacity, and data distribution of each device. The MEC manager, deployed within the edge server, proceeds to split the local model and perform training of the server-side portion. Meanwhile, it fine-tunes the splitting points based on the time-evolving statistical importance. The on-device manager, embedded inside each mobile device, continuously monitors the local training status while employing cost-aware checkpointing to match the runtime dynamic memory budget. Extensive experiments on representative datasets are conducted on both commercial off-the-shelf mobile device testbeds. The experimental results show that \n<italic>SmartSplit</i>\n excels in FL training on highly memory-constrained mobile SoCs, offering up to a 94% peak latency reduction and 100-fold memory savings. It enhances accuracy performance by 1.49%-57.18% and adaptively adjusts to dynamic memory budgets through cost-aware recomputation","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 12","pages":"2513-2526"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10716559/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) enables multiple devices to collaboratively train a shared model while preserving data privacy. Ever-increasing model complexity coupled with limited memory resources on the participating devices severely bottlenecks the deployment of FL in real-world scenarios. Thus, a framework that can effectively break the memory wall while jointly taking into account the hardware and statistical heterogeneity in FL is urgently required. In this article, we propose
SmartSplit
a framework that effectively reduces the memory footprint on the device side while guaranteeing the training progress and model accuracy for heterogeneous FL through model splitting. Towards this end,
SmartSplit
employs a hierarchical structure to adaptively guide the overall training process. In each training round, the central manager, hosted on the server, dynamically selects the participating devices and sets the cutting layer by jointly considering the memory budget, training capacity, and data distribution of each device. The MEC manager, deployed within the edge server, proceeds to split the local model and perform training of the server-side portion. Meanwhile, it fine-tunes the splitting points based on the time-evolving statistical importance. The on-device manager, embedded inside each mobile device, continuously monitors the local training status while employing cost-aware checkpointing to match the runtime dynamic memory budget. Extensive experiments on representative datasets are conducted on both commercial off-the-shelf mobile device testbeds. The experimental results show that
SmartSplit
excels in FL training on highly memory-constrained mobile SoCs, offering up to a 94% peak latency reduction and 100-fold memory savings. It enhances accuracy performance by 1.49%-57.18% and adaptively adjusts to dynamic memory budgets through cost-aware recomputation
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.