{"title":"Digital Phase-Locked Loops: Exploring Different Boundaries","authors":"Yuncheng Zhang;Dingxin Xu;Kenichi Okada","doi":"10.1109/OJSSCS.2024.3464551","DOIUrl":null,"url":null,"abstract":"This article examines the research area of digital phase-locked loops (DPLLs), a critical component in modern electronic systems, from wireless communication devices to RADAR systems and digital processors. As the demands for higher integration levels in electronic systems increase, DPLLs have become a key point for research and development. Implemented in scaled digital CMOS process, DPLLs offer potential advantages over traditional analog designs and have explored the boundaries of phaselocked loop (PLL) design. This article delves into several key directions of DPLL research: improvements in PLL performance through digital methods, the automation of PLL design using commercial electronic design automation (EDA) tools, and innovative approaches for using low-frequency references in wireless applications. Specifically, it covers the DPLL architectures using time-to-digital and digital-to-time converters, as well as bang–bang phase detectors, fully synthesizable DPLLs, and the integration of oversampling techniques that enable the use of a 32-kHz reference to avoid using bulky higher-frequency reference sources. This review outlines current achievements of DPLLs research in these directions.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"176-192"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10684740","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684740/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article examines the research area of digital phase-locked loops (DPLLs), a critical component in modern electronic systems, from wireless communication devices to RADAR systems and digital processors. As the demands for higher integration levels in electronic systems increase, DPLLs have become a key point for research and development. Implemented in scaled digital CMOS process, DPLLs offer potential advantages over traditional analog designs and have explored the boundaries of phaselocked loop (PLL) design. This article delves into several key directions of DPLL research: improvements in PLL performance through digital methods, the automation of PLL design using commercial electronic design automation (EDA) tools, and innovative approaches for using low-frequency references in wireless applications. Specifically, it covers the DPLL architectures using time-to-digital and digital-to-time converters, as well as bang–bang phase detectors, fully synthesizable DPLLs, and the integration of oversampling techniques that enable the use of a 32-kHz reference to avoid using bulky higher-frequency reference sources. This review outlines current achievements of DPLLs research in these directions.