Tian Tian;Jinshu Zhang;Kai Xiao;Yingxin Chen;Yuxuan Zhu;Peng Zhou;Wenzhong Bao;Junhao Chu;Jing Wan
{"title":"Graphene/Silicon-on-Insulator Heterogenous Cascode Amplifier With High Gain","authors":"Tian Tian;Jinshu Zhang;Kai Xiao;Yingxin Chen;Yuxuan Zhu;Peng Zhou;Wenzhong Bao;Junhao Chu;Jing Wan","doi":"10.1109/LED.2024.3464647","DOIUrl":null,"url":null,"abstract":"Although graphene field-effect transistors (GFET) exhibit high carrier mobility and transconductance, they suffer from low output resistance, resulting in limited voltage and power gain. In this study, a heterogenous process is developed to integrate single-layer graphene with silicon-on-insulator (SOI) substrate, then achieving a groundbreaking high-gain cascode amplifier. By combining the advantages of high transconductance from GFET and high output resistance from SOI-FET, the heterogenous cascode amplifier shows high output resistance and high voltage gain. Moreover, the heterogenous cascode amplifier demonstrates a significant improvement in transconductance (12.6 times of SOI-FET) and output resistance (98.7 times of GFET). A maximum gain of up to 80 is obtained by optimizing the bias conditions, vastly exceeding that of standalone GFET and SOI-FET devices. This graphene/SOI heterogenous cascode amplifier exhibits promising applications in radio-frequency transistor technology and wireless communication.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2209-2212"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10689431/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Although graphene field-effect transistors (GFET) exhibit high carrier mobility and transconductance, they suffer from low output resistance, resulting in limited voltage and power gain. In this study, a heterogenous process is developed to integrate single-layer graphene with silicon-on-insulator (SOI) substrate, then achieving a groundbreaking high-gain cascode amplifier. By combining the advantages of high transconductance from GFET and high output resistance from SOI-FET, the heterogenous cascode amplifier shows high output resistance and high voltage gain. Moreover, the heterogenous cascode amplifier demonstrates a significant improvement in transconductance (12.6 times of SOI-FET) and output resistance (98.7 times of GFET). A maximum gain of up to 80 is obtained by optimizing the bias conditions, vastly exceeding that of standalone GFET and SOI-FET devices. This graphene/SOI heterogenous cascode amplifier exhibits promising applications in radio-frequency transistor technology and wireless communication.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.