A Novel Chest-Based PPG Measurement System

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Journal of Translational Engineering in Health and Medicine-Jtehm Pub Date : 2024-10-01 DOI:10.1109/JTEHM.2024.3471468
Qiuyang Lin;Haocun Wang;Dwaipayan Biswas;Zheyi Li;Erika Lutin;Chris van Hoof;Mingyi Chen;Nick van Helleputte
{"title":"A Novel Chest-Based PPG Measurement System","authors":"Qiuyang Lin;Haocun Wang;Dwaipayan Biswas;Zheyi Li;Erika Lutin;Chris van Hoof;Mingyi Chen;Nick van Helleputte","doi":"10.1109/JTEHM.2024.3471468","DOIUrl":null,"url":null,"abstract":"Advancements in integrated circuit (IC) technology have accelerated the miniaturization of body-worn sensors and systems, enabling long-term health monitoring. Wearable electrocardiogram (ECG), finger photoplethysmogram (PPG), and wrist-worn PPG have shown great success and significantly improved life quality. Chest-based PPG has the potential to extract multiple vital signs but requires ultra-high dynamic range (DR) IC to read out the small PPG signal among large respiration and artifacts inherent in daily life. This paper presents a dedicated high DR system for wearable chest PPG applications with a small form factor. The whole measurement system is integrated on a 20 cm2 PCB board. We have formulated a comprehensive evaluation protocol to validate the system with on-body chest PPG measurement in the workspace environment. First, chest PPG data was obtained from 6 adults and compared to data from a standard ECG patch. This system showed an average absolute deviation (AD) of 0.41 beats per minute, achieving > 99.53% heart rate (HR) accuracy. Second, chest PPG was recorded and compared to conventional PPG finger clip and PPG wristband, also showing > 98.6% HR matching and an absolute deviation in the standard deviation of NN intervals (SDNN) of < 12.8 ms for HRV monitoring within the protocol. Moreover, it successfully derives other vital parameters such as respiration rate and blood oxygen level (SpO2), showing the advancement among all these three reference modalities. This system can pave the way for new application areas, such as chest patches, to monitor chronic heart and respiratory diseases.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"675-683"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701507","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10701507/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in integrated circuit (IC) technology have accelerated the miniaturization of body-worn sensors and systems, enabling long-term health monitoring. Wearable electrocardiogram (ECG), finger photoplethysmogram (PPG), and wrist-worn PPG have shown great success and significantly improved life quality. Chest-based PPG has the potential to extract multiple vital signs but requires ultra-high dynamic range (DR) IC to read out the small PPG signal among large respiration and artifacts inherent in daily life. This paper presents a dedicated high DR system for wearable chest PPG applications with a small form factor. The whole measurement system is integrated on a 20 cm2 PCB board. We have formulated a comprehensive evaluation protocol to validate the system with on-body chest PPG measurement in the workspace environment. First, chest PPG data was obtained from 6 adults and compared to data from a standard ECG patch. This system showed an average absolute deviation (AD) of 0.41 beats per minute, achieving > 99.53% heart rate (HR) accuracy. Second, chest PPG was recorded and compared to conventional PPG finger clip and PPG wristband, also showing > 98.6% HR matching and an absolute deviation in the standard deviation of NN intervals (SDNN) of < 12.8 ms for HRV monitoring within the protocol. Moreover, it successfully derives other vital parameters such as respiration rate and blood oxygen level (SpO2), showing the advancement among all these three reference modalities. This system can pave the way for new application areas, such as chest patches, to monitor chronic heart and respiratory diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型胸式 PPG 测量系统
集成电路(IC)技术的进步加速了佩戴式传感器和系统的微型化,使长期健康监测成为可能。可穿戴式心电图(ECG)、手指光电血流图(PPG)和腕戴式 PPG 取得了巨大成功,显著提高了生活质量。胸式 PPG 具有提取多种生命体征的潜力,但需要超高动态范围(DR)集成电路,才能在日常生活中固有的大量呼吸和伪像中读出微小的 PPG 信号。本文介绍了一种专用的高 DR 系统,适用于外形小巧的可穿戴胸部 PPG 应用。整个测量系统集成在一块 20 平方厘米的 PCB 板上。我们制定了一套全面的评估方案,以验证该系统在工作环境中进行的胸腔 PPG 测量。首先,我们获取了 6 名成年人的胸部 PPG 数据,并与标准心电图贴片的数据进行了比较。该系统的平均绝对偏差(AD)为 0.41 次/分钟,心率(HR)准确率大于 99.53%。其次,对胸部 PPG 进行了记录,并与传统 PPG 手指夹和 PPG 腕带进行了比较,结果显示心率匹配度大于 98.6%,NN 间期标准偏差(SDNN)的绝对偏差小于 12.8 毫秒,可用于协议内的心率变异监测。此外,它还成功地得出了其他生命参数,如呼吸频率和血氧水平(SpO2),显示了这三种参考模式的先进性。该系统可为新的应用领域(如胸贴)铺平道路,以监测慢性心脏和呼吸系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
期刊最新文献
A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation Video-Based Respiratory Rate Estimation for Infants in the NICU A Novel Chest-Based PPG Measurement System Integrating Multimodal Neuroimaging and Genetics: A Structurally-Linked Sparse Canonical Correlation Analysis Approach A Pre-Voiding Alarm System Using Wearable Ultrasound and Machine Learning Algorithms for Children With Nocturnal Enuresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1