Fast preparation of adhesive, anti-freezing hydrogels with strain- and magnetic-responsive conductivities†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-10-01 DOI:10.1039/D4MA00642A
Xinyu He, Xinyi Huang, Shuai He, Wei Zhang, Xinhua Li, Yong You and Fang Zuo
{"title":"Fast preparation of adhesive, anti-freezing hydrogels with strain- and magnetic-responsive conductivities†","authors":"Xinyu He, Xinyi Huang, Shuai He, Wei Zhang, Xinhua Li, Yong You and Fang Zuo","doi":"10.1039/D4MA00642A","DOIUrl":null,"url":null,"abstract":"<p >Incorporation of magnetic components enables flexible conductive hydrogels to exhibit strain-response properties in the presence of a magnetic field. However, the utilization of flexible conductive hydrogels is constrained under low-temperature conditions, and the mechanical properties of most magnetic hydrogels are poor. In this work, a conductive sensor was developed through Ca<small><sup>2+</sup></small>-initiated radical polymerization, utilizing the synergistic effects of sodium lignosulfonate (SL), calcium chloride (CaCl<small><sub>2</sub></small>), and Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@laponites (XLG). Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG not only served as a physical crosslinking agent but also functioned as a magnetic component. Due to the presence of both physical and chemical crosslinking, the Ca<small><sup>2+</sup></small>-Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG/SL/polyacrylamide (PAM) hydrogel had good mechanical properties. After being placed at −20 °C for 24 h, the Ca<small><sup>2+</sup></small>-Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG/SL/PAM hydrogel remained intact, soft, and tough, and it still exhibited good stretchability (1029%) and strength (69.7 kPa). In addition, the hydrogel also exhibited good adhesion with various substrates. Strain sensors assembled from the nanocomposite hydrogels achieved a gauge factor of 5.14, a response time of 166 ms, and good stability. The Ca<small><sup>2+</sup></small>-Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG/SL/PAM hydrogels had magnetic response properties, and they could respond quickly to magnetic field changes in the form of resistance changes. Thus, they have potential applications in magnetic field signal monitoring and soft actuators.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8629-8637"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00642a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00642a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporation of magnetic components enables flexible conductive hydrogels to exhibit strain-response properties in the presence of a magnetic field. However, the utilization of flexible conductive hydrogels is constrained under low-temperature conditions, and the mechanical properties of most magnetic hydrogels are poor. In this work, a conductive sensor was developed through Ca2+-initiated radical polymerization, utilizing the synergistic effects of sodium lignosulfonate (SL), calcium chloride (CaCl2), and Fe3O4@laponites (XLG). Fe3O4@XLG not only served as a physical crosslinking agent but also functioned as a magnetic component. Due to the presence of both physical and chemical crosslinking, the Ca2+-Fe3O4@XLG/SL/polyacrylamide (PAM) hydrogel had good mechanical properties. After being placed at −20 °C for 24 h, the Ca2+-Fe3O4@XLG/SL/PAM hydrogel remained intact, soft, and tough, and it still exhibited good stretchability (1029%) and strength (69.7 kPa). In addition, the hydrogel also exhibited good adhesion with various substrates. Strain sensors assembled from the nanocomposite hydrogels achieved a gauge factor of 5.14, a response time of 166 ms, and good stability. The Ca2+-Fe3O4@XLG/SL/PAM hydrogels had magnetic response properties, and they could respond quickly to magnetic field changes in the form of resistance changes. Thus, they have potential applications in magnetic field signal monitoring and soft actuators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速制备具有应变和磁响应导电性能的粘合型抗冻水凝胶†。
加入磁性成分可使柔性导电水凝胶在磁场作用下表现出应变响应特性。然而,在低温条件下,柔性导电水凝胶的使用受到限制,而且大多数磁性水凝胶的机械性能较差。在这项工作中,利用木质素磺酸钠(SL)、氯化钙(CaCl2)和 Fe3O4@皂石(XLG)的协同作用,通过 Ca2+ 引发的自由基聚合,开发了一种导电传感器。Fe3O4@XLG不仅是一种物理交联剂,也是一种磁性成分。由于同时存在物理和化学交联,Ca2+-Fe3O4@XLG/SL/聚丙烯酰胺(PAM)水凝胶具有良好的机械性能。将 Ca2+-Fe3O4@XLG/SL/PAM 水凝胶在 -20 °C 下放置 24 小时后,它仍然保持完整、柔软和坚韧,并表现出良好的伸展性(1029%)和强度(69.7 kPa)。此外,该水凝胶还与各种基底具有良好的粘附性。用纳米复合水凝胶组装的应变传感器的测量系数为 5.14,响应时间为 166 毫秒,并且具有良好的稳定性。Ca2+-Fe3O4@XLG/SL/PAM 水凝胶具有磁响应特性,能以电阻变化的形式快速响应磁场变化。因此,它们在磁场信号监测和软致动器方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Correction: Cu(i) diimine complexes as immobilised antibacterial photosensitisers operating in water under visible light. Selective placement of functionalised DNA origami via thermal scanning probe lithography patterning. Synthesis and magneto-dielectric properties of Ti-doped Ni0.5Zn0.5TixFe2−xO4 ferrite via a conventional sol–gel process Biocompatible and low-cost iodine-doped carbon dots as a bifunctional fluorescent and radiocontrast agent for X-ray CT imaging†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1