Electroreductive deoxygenative carboxylation of alkyl oxalates with CO2†

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-10-02 DOI:10.1039/D4GC03452J
Yong Yuan, Hangfei Jiang, Ya-Nan Zhang, Yuyan Tao, Xincong Liu and Congde Huo
{"title":"Electroreductive deoxygenative carboxylation of alkyl oxalates with CO2†","authors":"Yong Yuan, Hangfei Jiang, Ya-Nan Zhang, Yuyan Tao, Xincong Liu and Congde Huo","doi":"10.1039/D4GC03452J","DOIUrl":null,"url":null,"abstract":"<p >An electroreductive deoxygenative carboxylation of alkyl oxalates with CO<small><sub>2</sub></small> is demonstrated for the first time, which offers a general and scalable method for obtaining various carboxylic acids. This electrochemical method features a broad substrate scope and mild reaction conditions; various secondary benzyl alcohols and non-benzylic alcohols, primary benzyl alcohols and non-benzylic alcohols, and tertiary benzyl alcohols and non-benzylic alcohols can be converted into the corresponding carboxylic acids in good to excellent yields. Importantly, this electroreductive deoxygenative carboxylation reaction also offers a mild and straightforward route to access drug molecules, such as ibuprofen, (±) naproxen, fenoprofen, hexaprofen, and biprofen.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03452j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An electroreductive deoxygenative carboxylation of alkyl oxalates with CO2 is demonstrated for the first time, which offers a general and scalable method for obtaining various carboxylic acids. This electrochemical method features a broad substrate scope and mild reaction conditions; various secondary benzyl alcohols and non-benzylic alcohols, primary benzyl alcohols and non-benzylic alcohols, and tertiary benzyl alcohols and non-benzylic alcohols can be converted into the corresponding carboxylic acids in good to excellent yields. Importantly, this electroreductive deoxygenative carboxylation reaction also offers a mild and straightforward route to access drug molecules, such as ibuprofen, (±) naproxen, fenoprofen, hexaprofen, and biprofen.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烷基草酸盐与 CO2† 的电还原脱氧羧化反应
首次展示了烷基草酸盐与二氧化碳的电还原脱氧羧化反应,为获得各种羧酸提供了一种通用的、可扩展的方法。这种电化学方法具有底物范围广、反应条件温和的特点;各种仲苄基醇和非苄基醇、伯苄基醇和非苄基醇以及叔苄基醇和非苄基醇都能以良好到极佳的产率转化为相应的羧酸。重要的是,这种电还原脱氧羧化反应还为布洛芬、(±)萘普生、非诺洛芬、己洛芬和联洛芬等药物分子的获取提供了一条温和而直接的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1