Optimal management in island microgrids using D-FACTS devices with large-scale two-population algorithm

Q2 Energy Energy Informatics Pub Date : 2024-10-28 DOI:10.1186/s42162-024-00410-7
Mohamad Mehdi Khademi, Mahmoud Samiei Moghaddam, Reza Davarzani, Azita Azarfar, Mohamad Mehdi Hoseini
{"title":"Optimal management in island microgrids using D-FACTS devices with large-scale two-population algorithm","authors":"Mohamad Mehdi Khademi,&nbsp;Mahmoud Samiei Moghaddam,&nbsp;Reza Davarzani,&nbsp;Azita Azarfar,&nbsp;Mohamad Mehdi Hoseini","doi":"10.1186/s42162-024-00410-7","DOIUrl":null,"url":null,"abstract":"<div><p>Amidst the increasing complexity of microgrid optimization, characterized by numerous decision variables and intricate non-linear relationships, there is a pressing need for highly efficient algorithms. This study introduces a tailored Mixed Integer Nonlinear Programming (MINLP) model that optimizes the charging and discharging schedules of electric vehicles (EVs) and energy storage systems (ESS) while incorporating Distributed Flexible AC Transmission System (D-FACTS) devices. To address these challenges, a novel approach based on the Large-Scale Two-Population Algorithm (LSTPA) is proposed. The model's effectiveness was evaluated using a 33-node microgrid, where the proposed method achieved a total purchased energy of 1.2 MWh, a voltage deviation of 0.0357 p.u, and a CPU time of 551 s, outperforming traditional methods like NSGA-II, PSO, and JAYA. Additionally, in a 69-node microgrid, the approach resulted in a total purchased energy of 0.3 MWh and a voltage deviation of 0.0078 p.u. These results demonstrate the superior performance of the proposed method in terms of energy efficiency, voltage stability, and computational time, advancing the efficiency of microgrid management.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00410-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00410-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst the increasing complexity of microgrid optimization, characterized by numerous decision variables and intricate non-linear relationships, there is a pressing need for highly efficient algorithms. This study introduces a tailored Mixed Integer Nonlinear Programming (MINLP) model that optimizes the charging and discharging schedules of electric vehicles (EVs) and energy storage systems (ESS) while incorporating Distributed Flexible AC Transmission System (D-FACTS) devices. To address these challenges, a novel approach based on the Large-Scale Two-Population Algorithm (LSTPA) is proposed. The model's effectiveness was evaluated using a 33-node microgrid, where the proposed method achieved a total purchased energy of 1.2 MWh, a voltage deviation of 0.0357 p.u, and a CPU time of 551 s, outperforming traditional methods like NSGA-II, PSO, and JAYA. Additionally, in a 69-node microgrid, the approach resulted in a total purchased energy of 0.3 MWh and a voltage deviation of 0.0078 p.u. These results demonstrate the superior performance of the proposed method in terms of energy efficiency, voltage stability, and computational time, advancing the efficiency of microgrid management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大规模双人口算法的 D-FACTS 设备优化岛屿微电网管理
微电网优化的特点是决策变量众多、非线性关系错综复杂,其复杂性与日俱增,因此迫切需要高效的算法。本研究介绍了一种量身定制的混合整数非线性编程(MINLP)模型,可优化电动汽车(EV)和储能系统(ESS)的充放电计划,同时结合分布式柔性交流输电系统(D-FACTS)设备。为了应对这些挑战,我们提出了一种基于大规模双人口算法(LSTPA)的新方法。该模型的有效性通过一个 33 节点的微电网进行了评估,在该微电网中,所提出的方法实现了 1.2 MWh 的总购买能量、0.0357 p.u 的电压偏差和 551 s 的 CPU 时间,优于 NSGA-II、PSO 和 JAYA 等传统方法。此外,在一个 69 节点的微电网中,该方法的总购买电量为 0.3 兆瓦时,电压偏差为 0.0078 p.u。这些结果表明,所提方法在能源效率、电压稳定性和计算时间方面性能优越,提高了微电网管理的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Analysis of user behavior and energy-saving potential of electric water heaters Construction of a digital twin model for incremental aggregation of multi type load information in hybrid microgrids under integrity constraints Multi-objective optimal configuration of CCHP system containing hybrid electric-hydrogen energy storage system Prediction of building HVAC energy consumption based on least squares support vector machines Backup subscription scheme for differential protection using IEC61850-9-2 sampled values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1