{"title":"Selective electroreduction of CO2 to value-added C1 and C2 products using MOF and COF-based catalysts","authors":"Himan Dev Singh, Mayakannan G, Rajkumar Misra, Sujoy Sarkar, Debanjan Chakraborty, Shyamapada Nandi","doi":"10.1007/s42114-024-01016-z","DOIUrl":null,"url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) capture and conversion to value-added chemicals such as hydrocarbons or other energetic fuels is a potential alternate to carbon capture and sequestration in order to control the atmospheric CO<sub>2</sub> concentration. In this regard, electrochemical CO<sub>2</sub> reduction is one of the most important techniques to convert CO<sub>2</sub> into valuable chemicals. For this process, abundant and cost-effective catalysts are required to ensure sustainable scale-up of the process. Metal Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs), two different classes of porous crystalline solids having a lot of similarities in terms of ordered porosity, tunable pore size, thermal & chemical stability and modular tailor-ability are currently being explored for developing potential electrocatalysts for CO<sub>2</sub> reduction reaction. However, in most of the cases, the end product is CO, a potentially toxic gas molecule that has less energetic value compared to other hydrocarbons including methanol (CH<sub>3</sub>OH), methane (CH<sub>4</sub>), ethanol (C<sub>2</sub>H<sub>5</sub>OH), ethylene (C<sub>2</sub>H<sub>4</sub>), and formic acid (HCOOH) etc. Also, in most of the cases, the electrochemical CO<sub>2</sub> reduction processes suffer from low current densities and low faradaic efficiency, limiting the scale-up of the technology. However, this has been overcome in some cases via composite formation with conducting materials including nanoparticle-based systems, conducting polymers etc. Herein we highlight the MOFs and COFs-based electrocatalysts capable of reducing CO<sub>2</sub> to some value-added C1 and C2 products. It will also address the challenges in the field in terms of catalyst design and the future perspective of this field. Moreover, a structure–property relationship of MOFs and COFs-based electrocatalysts for CO<sub>2</sub> reduction has been realized which is crucial to understanding their catalytic performances. It has been comprehended that catalysts’ efficiency is mainly dominated by three factors including high porosity/surface area, availability of active sites & nature of coordination environment and electronic structure and conductivity of the catalysts. However, the possibility of functionalization and structural stability under harsh electrochemical conditions also plays an important role in their catalytic efficiency.</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01016-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon dioxide (CO2) capture and conversion to value-added chemicals such as hydrocarbons or other energetic fuels is a potential alternate to carbon capture and sequestration in order to control the atmospheric CO2 concentration. In this regard, electrochemical CO2 reduction is one of the most important techniques to convert CO2 into valuable chemicals. For this process, abundant and cost-effective catalysts are required to ensure sustainable scale-up of the process. Metal Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs), two different classes of porous crystalline solids having a lot of similarities in terms of ordered porosity, tunable pore size, thermal & chemical stability and modular tailor-ability are currently being explored for developing potential electrocatalysts for CO2 reduction reaction. However, in most of the cases, the end product is CO, a potentially toxic gas molecule that has less energetic value compared to other hydrocarbons including methanol (CH3OH), methane (CH4), ethanol (C2H5OH), ethylene (C2H4), and formic acid (HCOOH) etc. Also, in most of the cases, the electrochemical CO2 reduction processes suffer from low current densities and low faradaic efficiency, limiting the scale-up of the technology. However, this has been overcome in some cases via composite formation with conducting materials including nanoparticle-based systems, conducting polymers etc. Herein we highlight the MOFs and COFs-based electrocatalysts capable of reducing CO2 to some value-added C1 and C2 products. It will also address the challenges in the field in terms of catalyst design and the future perspective of this field. Moreover, a structure–property relationship of MOFs and COFs-based electrocatalysts for CO2 reduction has been realized which is crucial to understanding their catalytic performances. It has been comprehended that catalysts’ efficiency is mainly dominated by three factors including high porosity/surface area, availability of active sites & nature of coordination environment and electronic structure and conductivity of the catalysts. However, the possibility of functionalization and structural stability under harsh electrochemical conditions also plays an important role in their catalytic efficiency.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.