GRASIAN: shaping and characterization of the cold hydrogen and deuterium beams for the forthcoming first demonstration of gravitational quantum states of atoms
Carina Killian, Philipp Blumer, Paolo Crivelli, Otto Hanski, Daniel Kloppenburg, François Nez, Valery Nesvizhevsky, Serge Reynaud, Katharina Schreiner, Martin Simon, Sergey Vasiliev, Eberhard Widmann, Pauline Yzombard
{"title":"GRASIAN: shaping and characterization of the cold hydrogen and deuterium beams for the forthcoming first demonstration of gravitational quantum states of atoms","authors":"Carina Killian, Philipp Blumer, Paolo Crivelli, Otto Hanski, Daniel Kloppenburg, François Nez, Valery Nesvizhevsky, Serge Reynaud, Katharina Schreiner, Martin Simon, Sergey Vasiliev, Eberhard Widmann, Pauline Yzombard","doi":"10.1140/epjd/s10053-024-00916-5","DOIUrl":null,"url":null,"abstract":"<div><p>A low energy particle confined by a horizontal reflective surface and gravity settles in gravitationally bound quantum states. These gravitational quantum states (GQS) were so far only observed with neutrons. However, the existence of GQS is predicted also for atoms. The GRASIAN collaboration pursues the first observation of GQS of atoms, using a cryogenic hydrogen beam. This endeavor is motivated by the higher densities, which can be expected from hydrogen compared to neutrons, the easier access, the fact that GQS were never observed with atoms and the accessibility to hypothetical short-range interactions. In addition to enabling gravitational quantum spectroscopy, such a cryogenic hydrogen beam with very low vertical velocity components—a few cm <span>\\(\\hbox {s}^-1\\)</span>, can be used for precision optical and microwave spectroscopy. In this article, we report on our methods developed to reduce background and to detect atoms with a low horizontal velocity, which are needed for such an experiment. Our recent measurement results on the collimation of the hydrogen beam to 2 mm, the reduction of background and improvement of signal-to-noise and finally our first detection of atoms with velocities <span>\\(<{72}\\,\\hbox {ms}{^-1}\\)</span> are presented. Furthermore, we show calculations, estimating the feasibility of the planned experiment and simulations which confirm that we can select vertical velocity components in the order of cm <span>\\(\\hbox {s}^-1\\)</span>.</p></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjd/s10053-024-00916-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00916-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A low energy particle confined by a horizontal reflective surface and gravity settles in gravitationally bound quantum states. These gravitational quantum states (GQS) were so far only observed with neutrons. However, the existence of GQS is predicted also for atoms. The GRASIAN collaboration pursues the first observation of GQS of atoms, using a cryogenic hydrogen beam. This endeavor is motivated by the higher densities, which can be expected from hydrogen compared to neutrons, the easier access, the fact that GQS were never observed with atoms and the accessibility to hypothetical short-range interactions. In addition to enabling gravitational quantum spectroscopy, such a cryogenic hydrogen beam with very low vertical velocity components—a few cm \(\hbox {s}^-1\), can be used for precision optical and microwave spectroscopy. In this article, we report on our methods developed to reduce background and to detect atoms with a low horizontal velocity, which are needed for such an experiment. Our recent measurement results on the collimation of the hydrogen beam to 2 mm, the reduction of background and improvement of signal-to-noise and finally our first detection of atoms with velocities \(<{72}\,\hbox {ms}{^-1}\) are presented. Furthermore, we show calculations, estimating the feasibility of the planned experiment and simulations which confirm that we can select vertical velocity components in the order of cm \(\hbox {s}^-1\).
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.