{"title":"Cover Picture: ChemBioEng Reviews 5/2024","authors":"","doi":"10.1002/cben.202470501","DOIUrl":null,"url":null,"abstract":"<p>Effective biobased thermally insulating materials are crucial to addressing the escalating concerns surrounding climate change and plastic waste. Numerous experimental biobased foams have demonstrated properties that are either equal to or superior to those of traditional foams employed in the construction sector. The comprehensive review titled “Recent Advances in Biobased Foams and Foam Composites for Construction Applications” by DSouza et al. (DOI: https://doi.org/10.1002/cben.202300014) specifically focuses on the fabrication methods, advancements, and future prospects of biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF), and cellulose nanofibers (CNF) foams for application in residential construction. To be a suitable material for construction, a biobased foam must be an excellent thermal insulator (possessing low thermal conductivity), a fire retardant (with high limiting oxygen index) and possess remarkable mechanical properties. The cover image thus depicts forest waste-based foams that meet the design criteria for construction applications. [Credits: Riddhi Gadre for the initial design and InMyWork Studio team for the final design]</p><p>Biobased Foams for Construction Applications. Copyright: Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 5","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202470501","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202470501","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Effective biobased thermally insulating materials are crucial to addressing the escalating concerns surrounding climate change and plastic waste. Numerous experimental biobased foams have demonstrated properties that are either equal to or superior to those of traditional foams employed in the construction sector. The comprehensive review titled “Recent Advances in Biobased Foams and Foam Composites for Construction Applications” by DSouza et al. (DOI: https://doi.org/10.1002/cben.202300014) specifically focuses on the fabrication methods, advancements, and future prospects of biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF), and cellulose nanofibers (CNF) foams for application in residential construction. To be a suitable material for construction, a biobased foam must be an excellent thermal insulator (possessing low thermal conductivity), a fire retardant (with high limiting oxygen index) and possess remarkable mechanical properties. The cover image thus depicts forest waste-based foams that meet the design criteria for construction applications. [Credits: Riddhi Gadre for the initial design and InMyWork Studio team for the final design]
Biobased Foams for Construction Applications. Copyright: Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,