首页 > 最新文献

ChemBioEng Reviews最新文献

英文 中文
Cover Picture: ChemBioEng Reviews 1/2025
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-02-12 DOI: 10.1002/cben.202570101

Algae for biofuels as an alternative to fossil fuels. Copyright: toa555@AdobeStock

{"title":"Cover Picture: ChemBioEng Reviews 1/2025","authors":"","doi":"10.1002/cben.202570101","DOIUrl":"https://doi.org/10.1002/cben.202570101","url":null,"abstract":"<p>Algae for biofuels as an alternative to fossil fuels. Copyright: toa555@AdobeStock\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202570101","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: ChemBioEng Reviews 1/2025
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-02-12 DOI: 10.1002/cben.202570102
{"title":"Masthead: ChemBioEng Reviews 1/2025","authors":"","doi":"10.1002/cben.202570102","DOIUrl":"https://doi.org/10.1002/cben.202570102","url":null,"abstract":"","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202570102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Table of Contents: ChemBioEng Reviews 1/2025
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-02-12 DOI: 10.1002/cben.202570103
{"title":"Table of Contents: ChemBioEng Reviews 1/2025","authors":"","doi":"10.1002/cben.202570103","DOIUrl":"https://doi.org/10.1002/cben.202570103","url":null,"abstract":"","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202570103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-02-06 DOI: 10.1002/cben.202400023
Rab Nawaz, Salim Newaz Kazi, Bee Teng Chew, Mohd Nashrul Mohd Zubir, Kaleemullah Shaikh, Samr Ul Hasnain, Wajahat Ahmed Khan

Heat exchangers (HXs) are crucial in transmitting thermal energy in various industrial and domestic applications. Efforts to improve the design of HXs over the years have resulted in heat transfer enhancement with the penalty of pressure loss (∆P). Researchers have implemented various methods to enhance heat transfer. These methods have been categorized based on the need for external power. Active heat transfer methods require external energy, whereas passive heat transfer methods operate without an external power source. Increasing the effective surface area for heat transfer or inducing turbulence through surface alterations can improve passive heat transfer, leading to secondary flow. Of all the surface alterations, the corrugated tubes are particularly significant for enhancing the heat transfer in a turbulent flow, as they result in a reasonable increase in ΔP. Apart from an increase in ΔP, the initial cost of corrugated tube HX is higher than that of simple HX. Therefore, one should not write off the economic analysis of any passive enhancement technique. Various applications increasingly use corrugation in systems like the primary and secondary heat transport systems of nuclear reactors, refrigeration, and other industries. This paper critically reviews thermal investigations for improving heat transfer and a comprehensive economic analysis of corrugated tube HXs.

{"title":"Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects","authors":"Rab Nawaz,&nbsp;Salim Newaz Kazi,&nbsp;Bee Teng Chew,&nbsp;Mohd Nashrul Mohd Zubir,&nbsp;Kaleemullah Shaikh,&nbsp;Samr Ul Hasnain,&nbsp;Wajahat Ahmed Khan","doi":"10.1002/cben.202400023","DOIUrl":"https://doi.org/10.1002/cben.202400023","url":null,"abstract":"<p>Heat exchangers (HXs) are crucial in transmitting thermal energy in various industrial and domestic applications. Efforts to improve the design of HXs over the years have resulted in heat transfer enhancement with the penalty of pressure loss (∆<i>P</i>). Researchers have implemented various methods to enhance heat transfer. These methods have been categorized based on the need for external power. Active heat transfer methods require external energy, whereas passive heat transfer methods operate without an external power source. Increasing the effective surface area for heat transfer or inducing turbulence through surface alterations can improve passive heat transfer, leading to secondary flow. Of all the surface alterations, the corrugated tubes are particularly significant for enhancing the heat transfer in a turbulent flow, as they result in a reasonable increase in Δ<i>P</i>. Apart from an increase in Δ<i>P</i>, the initial cost of corrugated tube HX is higher than that of simple HX. Therefore, one should not write off the economic analysis of any passive enhancement technique. Various applications increasingly use corrugation in systems like the primary and secondary heat transport systems of nuclear reactors, refrigeration, and other industries. This paper critically reviews thermal investigations for improving heat transfer and a comprehensive economic analysis of corrugated tube HXs.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technological Advancement in Product Valorization of Agricultural Wastes Treated with Deep Eutectic Solvents: A Review
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-01-28 DOI: 10.1002/cben.202400054
Raushan Quraishi, Dibyajyoti Haldar

The current review article investigates the potential for producing highly valuable items solely from agricultural wastes treated with deep eutectic solvents (DES). A thorough explanation of the DES s’ reaction mechanism and biomass-treating capabilities is provided, shedding light on how green pretreatment methods can be applied to agricultural wastes in order to form high-value products. In view of that, the influences of crucial properties of DES like viscosity, density, and recycling ability of DES are well analyzed. This review article's next goal is to compile the most recent developments for the years 2018–2023 on DES-based valorization of agricultural wastes into a range of products, including biogas such as biohydrogen, liquid biofuels like bioethanol and butanol, and platform chemicals and reagents that are followed by novel materials. A discussion of the current criticalities and prospective avenues for further research concluded the paper. For this reason, having a thorough grasp of product value in one review paper from the potential of DES to agricultural wastes will be very helpful to the readers.

{"title":"Technological Advancement in Product Valorization of Agricultural Wastes Treated with Deep Eutectic Solvents: A Review","authors":"Raushan Quraishi,&nbsp;Dibyajyoti Haldar","doi":"10.1002/cben.202400054","DOIUrl":"https://doi.org/10.1002/cben.202400054","url":null,"abstract":"<p>The current review article investigates the potential for producing highly valuable items solely from agricultural wastes treated with deep eutectic solvents (DES). A thorough explanation of the DES s’ reaction mechanism and biomass-treating capabilities is provided, shedding light on how green pretreatment methods can be applied to agricultural wastes in order to form high-value products. In view of that, the influences of crucial properties of DES like viscosity, density, and recycling ability of DES are well analyzed. This review article's next goal is to compile the most recent developments for the years 2018–2023 on DES-based valorization of agricultural wastes into a range of products, including biogas such as biohydrogen, liquid biofuels like bioethanol and butanol, and platform chemicals and reagents that are followed by novel materials. A discussion of the current criticalities and prospective avenues for further research concluded the paper. For this reason, having a thorough grasp of product value in one review paper from the potential of DES to agricultural wastes will be very helpful to the readers.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reusable chemical catalysts for sustainable biodiesel production: The role of metallic elements
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-01-27 DOI: 10.1002/cben.202400033
Ali Gholami, Fathollah Pourfayaz, Konstantin Rodygin

In recent decades, biodiesel has emerged as a renewable and environmentally benign fuel compared with its fossil counterpart. From an industrial perspective, homogeneously-catalyzed transesterification has been established as the principal method for biodiesel synthesis owing to the moderate reaction conditions. However, homogeneous catalysts cannot be reused, and large amounts of wastewater accompany their separation from the products, making the production process detrimental to the environment and contrary to the sustainable development objectives. This grim reality confronting green fuel can be avoided by using heterogeneous catalysts that can be recycled and reused several times. Metal elements have played a crucial role in the development of such catalysts. These species are readily available in the environment and provide solid catalysts with high activity. Due to their significant contribution to achieving a sustainable production method for biodiesel, this paper reviews the role of metallic elements in fabricating functional materials, including metal oxides, mixed metal oxides, and metal-doped porous frameworks. The optimized reaction conditions focused on reusability were reported and analyzed for each class of catalysts. Challenges and future requirements for boosting the catalysts’ activity and reusability in the production process were also discussed. Leaching of active sites and pore blockage were the primary factors detrimental to reusability. These issues could be minimized by supported metal atoms on porous materials, providing a stronger bond of the metal sites and the support, and utilizing membrane reactors to continuously remove the products from a reaction mixture.

{"title":"Reusable chemical catalysts for sustainable biodiesel production: The role of metallic elements","authors":"Ali Gholami,&nbsp;Fathollah Pourfayaz,&nbsp;Konstantin Rodygin","doi":"10.1002/cben.202400033","DOIUrl":"https://doi.org/10.1002/cben.202400033","url":null,"abstract":"<p>In recent decades, biodiesel has emerged as a renewable and environmentally benign fuel compared with its fossil counterpart. From an industrial perspective, homogeneously-catalyzed transesterification has been established as the principal method for biodiesel synthesis owing to the moderate reaction conditions. However, homogeneous catalysts cannot be reused, and large amounts of wastewater accompany their separation from the products, making the production process detrimental to the environment and contrary to the sustainable development objectives. This grim reality confronting green fuel can be avoided by using heterogeneous catalysts that can be recycled and reused several times. Metal elements have played a crucial role in the development of such catalysts. These species are readily available in the environment and provide solid catalysts with high activity. Due to their significant contribution to achieving a sustainable production method for biodiesel, this paper reviews the role of metallic elements in fabricating functional materials, including metal oxides, mixed metal oxides, and metal-doped porous frameworks. The optimized reaction conditions focused on reusability were reported and analyzed for each class of catalysts. Challenges and future requirements for boosting the catalysts’ activity and reusability in the production process were also discussed. Leaching of active sites and pore blockage were the primary factors detrimental to reusability. These issues could be minimized by supported metal atoms on porous materials, providing a stronger bond of the metal sites and the support, and utilizing membrane reactors to continuously remove the products from a reaction mixture.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological Efficiency of Kunzea ericoides Based On Bioactive Compounds and Impact of Extraction
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-01-15 DOI: 10.1002/cben.202400044
Indhuja Devadass, Simon Swift, Saeid Baroutian

New Zealand is known for its diverse population of flora and fauna, of which 80 % are endemic. Māori, the indigenous people of New Zealand, have profound and holistic knowledge of plants and utilize them in medicinal, spiritual, and ecological practices. Among these, kānuka has traditionally been used for medicinal purposes. Prior in vitro studies on kānuka extracts have demonstrated promising antioxidant, antimicrobial, anti-inflammatory, and antiproliferative properties. These studies further recommend the translation of these findings into new medicines and commercial products. However, a significant knowledge gap regarding their therapeutic potential hinders their application in various industries. A deeper understanding of the biochemical composition of the extract and the mode of interaction to exert its bioactivity in the host is vital for achieving this. Hence, this review evaluates the bioactivities of kānuka in association with its bioactive compounds (polyphenolics and terpenoids) reported in the current literature. Knowing the critical role of extraction methodologies in determining bioactive composition, we highlighted their efficiency in the bioactivities of kānuka.

{"title":"Biological Efficiency of Kunzea ericoides Based On Bioactive Compounds and Impact of Extraction","authors":"Indhuja Devadass,&nbsp;Simon Swift,&nbsp;Saeid Baroutian","doi":"10.1002/cben.202400044","DOIUrl":"https://doi.org/10.1002/cben.202400044","url":null,"abstract":"<p>New Zealand is known for its diverse population of flora and fauna, of which 80 % are endemic. Māori, the indigenous people of New Zealand, have profound and holistic knowledge of plants and utilize them in medicinal, spiritual, and ecological practices. Among these, kānuka has traditionally been used for medicinal purposes. Prior in vitro studies on kānuka extracts have demonstrated promising antioxidant, antimicrobial, anti-inflammatory, and antiproliferative properties. These studies further recommend the translation of these findings into new medicines and commercial products. However, a significant knowledge gap regarding their therapeutic potential hinders their application in various industries. A deeper understanding of the biochemical composition of the extract and the mode of interaction to exert its bioactivity in the host is vital for achieving this. Hence, this review evaluates the bioactivities of kānuka in association with its bioactive compounds (polyphenolics and terpenoids) reported in the current literature. Knowing the critical role of extraction methodologies in determining bioactive composition, we highlighted their efficiency in the bioactivities of kānuka.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202400044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal Conversion of Microalgae into Biochar: A Review on Processes, Properties, and Applications
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2025-01-14 DOI: 10.1002/cben.202400035
Sherif Ishola Mustapha, Yusuf Makarfi Isa

Global energy consumption has drastically increased over the years due to population growth and industrialization. This has prompted an exploration for clean and renewable energy alternatives. Microalgae are widely recognized as a promising third-generation energy source because they have the capability to generate biofuels, including biochar. The utilization of microalgal biomass has been gaining traction because of their advantages, such as fast growth, a high rate of production, and high carbon-fixing efficiency. Thermochemical methods like hydrothermal carbonization, torrefaction, and pyrolysis can be employed to harness energy from microalgae. The different thermochemical methods employed for converting microalgal biomass into biochar have been discussed, as well as the factors affecting these methods. In addition, a dedicated section covered the components and properties of the generated biochar, including its thermal and surface properties. Furthermore, the economic analysis of the production of biochar from microalgae as well as the applications of microalgae-derived biochar were presented and discussed, along with suggestions for further research.

{"title":"Thermal Conversion of Microalgae into Biochar: A Review on Processes, Properties, and Applications","authors":"Sherif Ishola Mustapha,&nbsp;Yusuf Makarfi Isa","doi":"10.1002/cben.202400035","DOIUrl":"https://doi.org/10.1002/cben.202400035","url":null,"abstract":"<p>Global energy consumption has drastically increased over the years due to population growth and industrialization. This has prompted an exploration for clean and renewable energy alternatives. Microalgae are widely recognized as a promising third-generation energy source because they have the capability to generate biofuels, including biochar. The utilization of microalgal biomass has been gaining traction because of their advantages, such as fast growth, a high rate of production, and high carbon-fixing efficiency. Thermochemical methods like hydrothermal carbonization, torrefaction, and pyrolysis can be employed to harness energy from microalgae. The different thermochemical methods employed for converting microalgal biomass into biochar have been discussed, as well as the factors affecting these methods. In addition, a dedicated section covered the components and properties of the generated biochar, including its thermal and surface properties. Furthermore, the economic analysis of the production of biochar from microalgae as well as the applications of microalgae-derived biochar were presented and discussed, along with suggestions for further research.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"12 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202400035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Table of Contents: ChemBioEng Reviews 6/2024 目录:ChemBioEng Reviews 6/2024
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-12-18 DOI: 10.1002/cben.202470603
{"title":"Table of Contents: ChemBioEng Reviews 6/2024","authors":"","doi":"10.1002/cben.202470603","DOIUrl":"https://doi.org/10.1002/cben.202470603","url":null,"abstract":"","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202470603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: ChemBioEng Reviews 6/2024 封面图片:ChemBioEng Reviews 6/2024
IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL Pub Date : 2024-12-18 DOI: 10.1002/cben.202470601

Effective biobased thermally insulating materials are crucial to addressing the escalating concerns surrounding climate change and plastic waste. Numerous experimental biobased foams have demonstrated properties that are either equal to or superior to those of traditional foams employed in the construction sector. The comprehensive review titled “Recent Advances in Biobased Foams and Foam Composites for Construction Applications” by DSouza et al. (DOI: https://doi.org/10.1002/cben.202300014) specifically focuses on the fabrication methods, advancements, and future prospects of biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF), and cellulose nanofibers (CNF) foams for application in residential construction. To be a suitable material for construction, a biobased foam must be an excellent thermal insulator (possessing low thermal conductivity), a fire retardant (with high limiting oxygen index) and possess remarkable mechanical properties. The cover image thus depicts forest waste-based foams that meet the design criteria for construction applications. [Credits: Riddhi Gadre for the initial design and InMyWork Studio team for the final design]

Biobased Foams for Construction Applications. Copyright: Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu

有效的生物基隔热材料对于解决日益严重的气候变化和塑料废物问题至关重要。许多生物基泡沫实验表明,其性能等同于或优于建筑领域使用的传统泡沫。DSouza 等人撰写的题为 "建筑用生物基泡沫和泡沫复合材料的最新进展 "的综合综述(DOI: https://doi.org/10.1002/cben.202300014)特别关注了应用于住宅建筑的生物基聚氨酯 (BPU)、生物基苯酚甲醛 (BPF) 和纤维素纳米纤维 (CNF) 泡沫的制造方法、进展和未来前景。要成为一种合适的建筑材料,生物基泡沫必须是一种出色的隔热材料(具有较低的热传导率)、阻燃剂(具有较高的极限氧指数)并具有出色的机械性能。因此,封面图片展示了符合建筑应用设计标准的森林废弃物泡沫。[图片来源:Riddhi GadreRiddhi Gadre 负责最初设计,InMyWork 工作室团队负责最终设计]建筑用生物基泡沫。版权所有:Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu版权所有。
{"title":"Cover Picture: ChemBioEng Reviews 6/2024","authors":"","doi":"10.1002/cben.202470601","DOIUrl":"https://doi.org/10.1002/cben.202470601","url":null,"abstract":"<p>Effective biobased thermally insulating materials are crucial to addressing the escalating concerns surrounding climate change and plastic waste. Numerous experimental biobased foams have demonstrated properties that are either equal to or superior to those of traditional foams employed in the construction sector. The comprehensive review titled “Recent Advances in Biobased Foams and Foam Composites for Construction Applications” by DSouza et al. (DOI: https://doi.org/10.1002/cben.202300014) specifically focuses on the fabrication methods, advancements, and future prospects of biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF), and cellulose nanofibers (CNF) foams for application in residential construction. To be a suitable material for construction, a biobased foam must be an excellent thermal insulator (possessing low thermal conductivity), a fire retardant (with high limiting oxygen index) and possess remarkable mechanical properties. The cover image thus depicts forest waste-based foams that meet the design criteria for construction applications. [Credits: Riddhi Gadre for the initial design and InMyWork Studio team for the final design]</p><p>Biobased Foams for Construction Applications. Copyright: Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202470601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemBioEng Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1