The Global Atmospheric Energy Cycle in TaiESM1: Present and Future

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-10-22 DOI:10.1029/2024JD041108
Chia-Chi Wang, Wei-Liang Lee, Huang-Hsiung Hsu, Wei-Chen Kuo, Yu-Shen Lin
{"title":"The Global Atmospheric Energy Cycle in TaiESM1: Present and Future","authors":"Chia-Chi Wang,&nbsp;Wei-Liang Lee,&nbsp;Huang-Hsiung Hsu,&nbsp;Wei-Chen Kuo,&nbsp;Yu-Shen Lin","doi":"10.1029/2024JD041108","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>The Lorenz Energy Cycle (LEC) in the Taiwan Earth System Model Version 1 (TaiESM1) historical simulation is calculated and compared with ERA5 to evaluate the model performance from the thermodynamic aspect. The future change of LEC is accessed by comparing the SSP5-8.5 and historical simulations in TaiESM1. TaiESM1 reasonably simulates the global mean, seasonal cycle, and spatial patterns of the energy reservoirs with larger values in the mean energy components and smaller in the eddy energy components. The energy cycle in TaiESM1 is about 35%–45% stronger than ERA5, except from December to February. The impact of global warming on the LEC is different at the vertical levels. The influence of meridional temperature gradient change is the dominant factor in the intensity of the energy cycle, and the change in static stability only contributes to the lower troposphere. Lifting the tropopause in the tropics increases the meridional temperature gradient and produces more zonal mean potential energy (<i>P</i><sub><i>M</i></sub>) in the upper troposphere. <i>P</i><sub><i>M</i></sub> is the primary driver of the LEC and leads to a more active energy cycle in the upper troposphere. As the tropical tropospheric depth increases and the mid-latitude eddy activities become more active, more (less) energy is stored in the upper (lower) troposphere, and the energy conversion processes tend to become stronger (weaker) in the upper (lower) troposphere.</p>\n </section>\n </div>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 20","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041108","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Lorenz Energy Cycle (LEC) in the Taiwan Earth System Model Version 1 (TaiESM1) historical simulation is calculated and compared with ERA5 to evaluate the model performance from the thermodynamic aspect. The future change of LEC is accessed by comparing the SSP5-8.5 and historical simulations in TaiESM1. TaiESM1 reasonably simulates the global mean, seasonal cycle, and spatial patterns of the energy reservoirs with larger values in the mean energy components and smaller in the eddy energy components. The energy cycle in TaiESM1 is about 35%–45% stronger than ERA5, except from December to February. The impact of global warming on the LEC is different at the vertical levels. The influence of meridional temperature gradient change is the dominant factor in the intensity of the energy cycle, and the change in static stability only contributes to the lower troposphere. Lifting the tropopause in the tropics increases the meridional temperature gradient and produces more zonal mean potential energy (PM) in the upper troposphere. PM is the primary driver of the LEC and leads to a more active energy cycle in the upper troposphere. As the tropical tropospheric depth increases and the mid-latitude eddy activities become more active, more (less) energy is stored in the upper (lower) troposphere, and the energy conversion processes tend to become stronger (weaker) in the upper (lower) troposphere.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TaiESM1 中的全球大气能量循环:现在与未来
计算台湾地球系统模式第一版(TaiESM1)历史模拟中的洛伦兹能量循环(LEC),并与ERA5进行比较,从热力学方面评估模式性能。通过比较SSP5-8.5和TaiESM1的历史模拟,得出LEC的未来变化。TaiESM1合理地模拟了能量库的全球平均值、季节循环和空间模式,平均能量分量值较大,涡旋能量分量值较小。除 12 月至 2 月外,TaiESM1 的能量循环比 ERA5 强约 35%-45%。全球变暖对 LEC 的影响在垂直水平上有所不同。经向温度梯度变化的影响是能量循环强度的主导因素,而静力稳定性的变化只对对流层下部有影响。热带地区对流层顶的抬升增加了经向温度梯度,在对流层上部产生了更多的地带平均势能(PM)。平均势能是 LEC 的主要驱动力,导致对流层上部的能量循环更加活跃。随着热带对流层深度的增加和中纬度涡旋活动的活跃,对流层上层(下层)储存的能量增加(减少),对流层上层(下层)的能量转换过程趋于增强(减弱)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Analysis of the Influence of Clear-Sky Fluxes on the Cloud-Type Mean Cloud Radiative Effects in the Tropical Convectively Active Regions With CERES Satellite Data A Simple Model for the Evaporation of Hydrometeors and Their Isotopes Modeling the Effects of Vegetation and Snow on Dust Storm Over the Gobi Desert Origins of Extreme CAPE Around the World A More Transparent Infrared Window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1