Optimizing Hybrid Active–Passive Thermal Management of Prismatic Li-Ion Batteries Using Phase Change Materials and Porous-Filled Mini-Channels

Energy Storage Pub Date : 2024-10-23 DOI:10.1002/est2.70060
R. J. Venkatesh, Vara Prasad Bhemuni, Dilip Shyam Prakash Chinnam, M. D. Mohan Gift
{"title":"Optimizing Hybrid Active–Passive Thermal Management of Prismatic Li-Ion Batteries Using Phase Change Materials and Porous-Filled Mini-Channels","authors":"R. J. Venkatesh,&nbsp;Vara Prasad Bhemuni,&nbsp;Dilip Shyam Prakash Chinnam,&nbsp;M. D. Mohan Gift","doi":"10.1002/est2.70060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Tackling climate change is crucial, and electrifying the vehicular transportation sector is essential to reduce greenhouse gas emissions. Lithium-ion (Li-ion) batteries are highly efficient for electric vehicles (EVs) but face challenges such as thermal management, risk of thermal runaway, and high costs of lithium and cobalt. Overcoming these challenges is vital for the widespread adoption of hybrid and EVs. To overcome this drawback, this article proposed a large-kernel attention graph convolutional network (LKAGCN) with leaf in wind optimization algorithm (LWOA) named as LKAGCN-LWOA technique, which enhances the thermal management of prismatic Li-ion batteries by integrating both active and passive cooling techniques. The system incorporates phase change materials (PCMs) with porous-filled mini-channels to regulate battery temperature effectively. The LKAGCN analyze thermal properties, battery conditions, and PCM characteristics to predict and optimize the thermal behavior of the battery pack using LWOA. The proposed methods tune the parameters of the hybrid thermal management system, ensuring efficient thermal regulation and improved performance. The proposed method is compared to various existing methods such as convolutional neural network (CNN), Taguchi method, and Finite element model (FEM).</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tackling climate change is crucial, and electrifying the vehicular transportation sector is essential to reduce greenhouse gas emissions. Lithium-ion (Li-ion) batteries are highly efficient for electric vehicles (EVs) but face challenges such as thermal management, risk of thermal runaway, and high costs of lithium and cobalt. Overcoming these challenges is vital for the widespread adoption of hybrid and EVs. To overcome this drawback, this article proposed a large-kernel attention graph convolutional network (LKAGCN) with leaf in wind optimization algorithm (LWOA) named as LKAGCN-LWOA technique, which enhances the thermal management of prismatic Li-ion batteries by integrating both active and passive cooling techniques. The system incorporates phase change materials (PCMs) with porous-filled mini-channels to regulate battery temperature effectively. The LKAGCN analyze thermal properties, battery conditions, and PCM characteristics to predict and optimize the thermal behavior of the battery pack using LWOA. The proposed methods tune the parameters of the hybrid thermal management system, ensuring efficient thermal regulation and improved performance. The proposed method is compared to various existing methods such as convolutional neural network (CNN), Taguchi method, and Finite element model (FEM).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相变材料和多孔填充微型通道优化棱柱形锂离子电池的主被动混合热管理
应对气候变化至关重要,而车辆运输部门电气化对于减少温室气体排放至关重要。锂离子(Li-ion)电池在电动汽车(EV)中具有很高的效率,但也面临着热管理、热失控风险以及锂和钴的高成本等挑战。克服这些挑战对于混合动力汽车和电动汽车的广泛应用至关重要。为了克服这一弊端,本文提出了一种大核注意力图卷积网络(LKAGCN)和风中叶优化算法(LWOA),命名为 LKAGCN-LWOA 技术,该技术通过整合主动和被动冷却技术来增强棱柱形锂离子电池的热管理。该系统将相变材料(PCM)与多孔填充微型通道相结合,可有效调节电池温度。LKAGCN 分析热特性、电池条件和 PCM 特性,利用 LWOA 预测和优化电池组的热行为。所提出的方法可以调整混合热管理系统的参数,确保有效的热调节和更高的性能。建议的方法与卷积神经网络 (CNN)、田口方法和有限元模型 (FEM) 等各种现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle Sustainable Hydrogen Storage and Methanol Synthesis Through Solar-Powered Co-Electrolysis Using SOEC Strategic Patent Portfolio Management in the Sodium-Ion Battery Industry: Navigating Innovation and Competition Optimizing Wind and Solar Integration in a Hybrid Energy System for Enhanced Sustainability Exploration of Hydrogen Storage Exhibited by Rh-Decorated Pristine and Defective Graphenes: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1