Facile Synthesis of Colocasia esculenta Peels-Derived Activated Carbon for High-Performance Supercapacitor

Energy Storage Pub Date : 2024-10-23 DOI:10.1002/est2.70057
Daniel Nframah Ampong, Perseverance Dzikunu, Frank Ofori Agyemang, Patrick Aggrey, Martinson Addo Nartey, Amit Kumar Pal, Emmanuel Gikunoo, Anthony Andrews, Kwadwo Mensah-Darkwa, Ram K. Gupta
{"title":"Facile Synthesis of Colocasia esculenta Peels-Derived Activated Carbon for High-Performance Supercapacitor","authors":"Daniel Nframah Ampong,&nbsp;Perseverance Dzikunu,&nbsp;Frank Ofori Agyemang,&nbsp;Patrick Aggrey,&nbsp;Martinson Addo Nartey,&nbsp;Amit Kumar Pal,&nbsp;Emmanuel Gikunoo,&nbsp;Anthony Andrews,&nbsp;Kwadwo Mensah-Darkwa,&nbsp;Ram K. Gupta","doi":"10.1002/est2.70057","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Biomass and biowaste resources can be used to create self-doped carbon with a distinctive microstructure. Using an economical and environmentally friendly method to create heteroatom-doped carbon electrode materials with excellent electrochemical performance has attracted much attention in the energy storage industry. A novel facile two-step, low-cost, and eco-friendly synthesis method for <i>Colocasia esculenta</i> peels has been developed to manufacture activated carbon (CEPAC) and used as an electrode material for supercapacitor application. The CEPAC 1:1 displayed a high specific surface area of 910 m<sup>2</sup>/g with oxygen-heteroatom polar sites in the carbon network. A specific capacitance of 525.3 F/g was recorded in the three-electrode system using a 3 M KOH solution. The assembled symmetric cell delivered an impressive specific capacitance of 98.7 F/g at 1 A/g while maintaining 98.4% of the initially recorded capacitance after 10 000 charge–discharge cycles. These results present a promising low-cost and simple processing route for synthesizing electrode materials with superior surface properties for high-performance supercapacitors.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass and biowaste resources can be used to create self-doped carbon with a distinctive microstructure. Using an economical and environmentally friendly method to create heteroatom-doped carbon electrode materials with excellent electrochemical performance has attracted much attention in the energy storage industry. A novel facile two-step, low-cost, and eco-friendly synthesis method for Colocasia esculenta peels has been developed to manufacture activated carbon (CEPAC) and used as an electrode material for supercapacitor application. The CEPAC 1:1 displayed a high specific surface area of 910 m2/g with oxygen-heteroatom polar sites in the carbon network. A specific capacitance of 525.3 F/g was recorded in the three-electrode system using a 3 M KOH solution. The assembled symmetric cell delivered an impressive specific capacitance of 98.7 F/g at 1 A/g while maintaining 98.4% of the initially recorded capacitance after 10 000 charge–discharge cycles. These results present a promising low-cost and simple processing route for synthesizing electrode materials with superior surface properties for high-performance supercapacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
便捷合成用于高性能超级电容器的芋头皮活性炭
生物质和生物废料资源可用于制造具有独特微观结构的自掺杂碳。使用一种经济环保的方法来制造具有优异电化学性能的杂原子掺杂碳电极材料,在储能行业引起了广泛关注。我们开发了一种新颖、简便、低成本且环保的两步法合成芋头皮活性炭(CEPAC)的方法,并将其用作超级电容器的电极材料。CEPAC 1:1 具有 910 m2/g 的高比表面积,碳网络中存在氧-杂原子极性位点。在使用 3 M KOH 溶液的三电极系统中记录到了 525.3 F/g 的比电容。组装好的对称电池在 1 A/g 时的比电容达到了令人印象深刻的 98.7 F/g,同时在 10,000 次充放电循环后保持了最初记录电容的 98.4%。这些结果为高性能超级电容器合成具有优异表面特性的电极材料提供了一条前景广阔的低成本简单加工途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
A System to Store Waste Heat as Liquid Hydrogen Assisted by Organic Rankine Cycle, Proton Exchange Membrane Electrolyzer, and Mixed Refrigerant Hydrogen Liquefaction Cycle Sustainable Hydrogen Storage and Methanol Synthesis Through Solar-Powered Co-Electrolysis Using SOEC Strategic Patent Portfolio Management in the Sodium-Ion Battery Industry: Navigating Innovation and Competition Optimizing Wind and Solar Integration in a Hybrid Energy System for Enhanced Sustainability Exploration of Hydrogen Storage Exhibited by Rh-Decorated Pristine and Defective Graphenes: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1