{"title":"Toward Answering Federated Spatial Range Queries Under Local Differential Privacy","authors":"Guanghui Feng, Guojun Wang, Tao Peng","doi":"10.1155/2024/2408270","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Federated analytics (FA) over spatial data with local differential privacy (LDP) has attracted considerable research attention recently. Existing solutions for this problem mostly employ a uniform grid (UG) structure, which recursively decomposes the whole spatial domain into fine-grained regions in the distributed setting. In each round, the sampled clients perturb their locations using a random response mechanism with a fixed probability. This approach, however, cannot encode the client’s location effectively and will lead to ill-suited query results. To address the deficiency of existing solutions, we propose LDP-FSRQ, a spatial range query algorithm that relies on a hybrid spatial structure composed of the UG and quad-tree with nonuniform perturbation (NUP) probability to encode and perturb clients’ locations. In each iteration of LDP-FSRQ, each client adopts the quad-tree to encode his/her location into a binary string and uses four local perturbation mechanisms to protect the encoded string. Then, the collector prunes the quad-tree of the current round according to the clients’ reports and shares the pruned tree with the clients of the next round. We demonstrate the application of LDP-FSRQ on Beijing, Landmark, Check-in, and NYC datasets, and the experimental results show that our approach outperforms its competitors in terms of queries’ utility.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2408270","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2408270","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Federated analytics (FA) over spatial data with local differential privacy (LDP) has attracted considerable research attention recently. Existing solutions for this problem mostly employ a uniform grid (UG) structure, which recursively decomposes the whole spatial domain into fine-grained regions in the distributed setting. In each round, the sampled clients perturb their locations using a random response mechanism with a fixed probability. This approach, however, cannot encode the client’s location effectively and will lead to ill-suited query results. To address the deficiency of existing solutions, we propose LDP-FSRQ, a spatial range query algorithm that relies on a hybrid spatial structure composed of the UG and quad-tree with nonuniform perturbation (NUP) probability to encode and perturb clients’ locations. In each iteration of LDP-FSRQ, each client adopts the quad-tree to encode his/her location into a binary string and uses four local perturbation mechanisms to protect the encoded string. Then, the collector prunes the quad-tree of the current round according to the clients’ reports and shares the pruned tree with the clients of the next round. We demonstrate the application of LDP-FSRQ on Beijing, Landmark, Check-in, and NYC datasets, and the experimental results show that our approach outperforms its competitors in terms of queries’ utility.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.