首页 > 最新文献

International Journal of Intelligent Systems最新文献

英文 中文
A Coarse-to-Fine 3D LiDAR Localization With Deep Local Features for Long-Term Robot Navigation in Large Environments 基于深度局部特征的大环境下机器人长时间导航的粗到精3D激光雷达定位
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-20 DOI: 10.1155/int/4278222
Míriam Máximo, Antonio Santo, Arturo Gil, Mónica Ballesta, David Valiente

The location of a robot is a key aspect in the field of mobile robotics. This problem is particularly complex when the initial pose of the robot is unknown. In order to find a solution, it is necessary to perform a global localization. In this paper, we propose a method that addresses this problem using a coarse-to-fine solution. The coarse localization relies on a probabilistic approach of the Monte Carlo localization (MCL) method, with the contribution of a robust deep learning model, the MinkUNeXt neural network, to produce a robust description of point clouds of a 3D LiDAR within the observation model. The MCL method has been approached from a topological perspective, considering that the particles are initialized on the map positions where LiDAR scans have been previously captured. For fine localization, global point cloud registration has been implemented. MinkUNeXt aids this by exploiting the outputs of its intermediate layers to produce deep local features for each point in a scan. These features facilitate precise alignment between the current sensor observation (query) and one of the point clouds on the map. The proposed MCL method incorporating deep local features for fine localization is termed MCL-DLF. Alternatively, a classical ICP method has been implemented for this precise localization aiming at comparison purposes. This method is termed as MCL-ICP. In order to validate the performance of the MCL-DLF method, it has been tested on publicly available datasets such as the NCLT dataset, which provides seasonal large-scale environments. In addition, tests have been also performed with our own data (UMH) that also include seasonal variations on large indoor/outdoor scenarios. The results, which were compared with established state-of-the-art methodologies, demonstrate that the MCL-DLF method obtains an accurate estimate of the robot localization in dynamic environments despite changes in environmental conditions. For reproducibility purposes, the code is publicly available.

机器人的定位是移动机器人领域的一个关键问题。当机器人的初始姿态未知时,这个问题尤其复杂。为了找到解决方案,有必要执行全局本地化。在本文中,我们提出了一种方法来解决这个问题,使用一个从粗到细的解决方案。粗定位依赖于蒙特卡罗定位(MCL)方法的概率方法,并辅以鲁棒深度学习模型MinkUNeXt神经网络,在观测模型中生成3D激光雷达点云的鲁棒描述。考虑到粒子是在先前捕获LiDAR扫描的地图位置上初始化的,从拓扑学的角度考虑了MCL方法。为了精细定位,实现了全局点云配准。MinkUNeXt通过利用中间层的输出为扫描中的每个点生成深度局部特征来帮助实现这一点。这些功能有助于在当前传感器观测(查询)和地图上的一个点云之间进行精确对齐。本文提出的结合深度局部特征进行精细定位的MCL方法称为MCL- dlf。另外,为了实现这种精确定位的比较目的,已经实现了一种经典的ICP方法。这种方法被称为MCL-ICP。为了验证MCL-DLF方法的性能,它已经在公开可用的数据集(如NCLT数据集)上进行了测试,该数据集提供了季节性的大规模环境。此外,还使用我们自己的数据(UMH)进行了测试,其中还包括大型室内/室外场景的季节性变化。结果表明,尽管环境条件发生变化,MCL-DLF方法仍能准确估计机器人在动态环境中的定位。出于再现性的考虑,代码是公开的。
{"title":"A Coarse-to-Fine 3D LiDAR Localization With Deep Local Features for Long-Term Robot Navigation in Large Environments","authors":"Míriam Máximo,&nbsp;Antonio Santo,&nbsp;Arturo Gil,&nbsp;Mónica Ballesta,&nbsp;David Valiente","doi":"10.1155/int/4278222","DOIUrl":"https://doi.org/10.1155/int/4278222","url":null,"abstract":"<p>The location of a robot is a key aspect in the field of mobile robotics. This problem is particularly complex when the initial pose of the robot is unknown. In order to find a solution, it is necessary to perform a global localization. In this paper, we propose a method that addresses this problem using a coarse-to-fine solution. The coarse localization relies on a probabilistic approach of the Monte Carlo localization (MCL) method, with the contribution of a robust deep learning model, the MinkUNeXt neural network, to produce a robust description of point clouds of a 3D LiDAR within the observation model. The MCL method has been approached from a topological perspective, considering that the particles are initialized on the map positions where LiDAR scans have been previously captured. For fine localization, global point cloud registration has been implemented. MinkUNeXt aids this by exploiting the outputs of its intermediate layers to produce deep local features for each point in a scan. These features facilitate precise alignment between the current sensor observation (query) and one of the point clouds on the map. The proposed MCL method incorporating deep local features for fine localization is termed MCL-DLF. Alternatively, a classical ICP method has been implemented for this precise localization aiming at comparison purposes. This method is termed as MCL-ICP. In order to validate the performance of the MCL-DLF method, it has been tested on publicly available datasets such as the NCLT dataset, which provides seasonal large-scale environments. In addition, tests have been also performed with our own data (UMH) that also include seasonal variations on large indoor/outdoor scenarios. The results, which were compared with established state-of-the-art methodologies, demonstrate that the MCL-DLF method obtains an accurate estimate of the robot localization in dynamic environments despite changes in environmental conditions. For reproducibility purposes, the code is publicly available.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2026 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4278222","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Method for Managing Changes in a Project Based on Modeling Its Implementation With Digital Twins 基于数字孪生模型的项目变更管理方法的开发
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-20 DOI: 10.1155/int/1903032
Petro Pavlenko, Iurii Teslia, Iulia Khlevna, Xuezhi Shi, Oleksii Yehorchenkov, Nataliia Yehorchenkova, Yevheniia Kataieva, Andrii Khlevnyi, Tatiana Latysheva

The object of the study is the processes of managing project changes. The research problem concerns the development of a change management method that, based on the simulation of project execution within a digital twins environment, enables the prediction and effective management of the most probable and impactful changes. The influence of current trends on the development of digital technologies was analyzed. The necessity of applying digitalization methods to enhance the efficiency of project management was identified. It was demonstrated that digital twin–based modeling of project processes and changes provides a foundation for developing optimal management strategies. A concept for utilizing digital twins of project objects and processes to support effective change management was proposed. The goals and objectives of the study were formulated, focusing on the development of a change management method for projects based on their representation through digital twins. It was shown that modeling the impact of changes on project execution requires the application of models and methods for managing the interaction of project processes based on digital twins. The structure of the digital twin environment for projects was defined, within which the causes and impacts of changes on projects were modeled, as well as the interaction model of digital twins during project implementation, and a method for forecasting and assessing the effect of changes on project execution was developed. A method and practical tools for managing changes in projects of the developer company ICD Investments have been developed and tested in practice.

研究的对象是管理项目变更的过程。研究问题涉及到一种变革管理方法的开发,该方法基于数字孪生环境中项目执行的模拟,能够预测和有效管理最可能和最具影响力的变革。分析了当前趋势对数字技术发展的影响。指出了应用数字化手段提高项目管理效率的必要性。结果表明,基于数字孪生的项目过程和变化建模为制定最佳管理策略提供了基础。提出了利用项目对象和过程的数字孪生来支持有效变更管理的概念。制定了研究的目标和目的,重点是开发一种基于数字孪生表示的项目变更管理方法。研究表明,对变化对项目执行的影响进行建模需要应用基于数字孪生的模型和方法来管理项目过程的交互。定义了项目数字孪生环境的结构,构建了项目变化的原因和影响模型,以及项目实施过程中数字孪生的交互模型,并提出了变化对项目执行影响的预测和评估方法。开发公司ICD Investments开发了一种管理项目变更的方法和实用工具,并在实践中进行了测试。
{"title":"Development of a Method for Managing Changes in a Project Based on Modeling Its Implementation With Digital Twins","authors":"Petro Pavlenko,&nbsp;Iurii Teslia,&nbsp;Iulia Khlevna,&nbsp;Xuezhi Shi,&nbsp;Oleksii Yehorchenkov,&nbsp;Nataliia Yehorchenkova,&nbsp;Yevheniia Kataieva,&nbsp;Andrii Khlevnyi,&nbsp;Tatiana Latysheva","doi":"10.1155/int/1903032","DOIUrl":"https://doi.org/10.1155/int/1903032","url":null,"abstract":"<p>The object of the study is the processes of managing project changes. The research problem concerns the development of a change management method that, based on the simulation of project execution within a digital twins environment, enables the prediction and effective management of the most probable and impactful changes. The influence of current trends on the development of digital technologies was analyzed. The necessity of applying digitalization methods to enhance the efficiency of project management was identified. It was demonstrated that digital twin–based modeling of project processes and changes provides a foundation for developing optimal management strategies. A concept for utilizing digital twins of project objects and processes to support effective change management was proposed. The goals and objectives of the study were formulated, focusing on the development of a change management method for projects based on their representation through digital twins. It was shown that modeling the impact of changes on project execution requires the application of models and methods for managing the interaction of project processes based on digital twins. The structure of the digital twin environment for projects was defined, within which the causes and impacts of changes on projects were modeled, as well as the interaction model of digital twins during project implementation, and a method for forecasting and assessing the effect of changes on project execution was developed. A method and practical tools for managing changes in projects of the developer company ICD Investments have been developed and tested in practice.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2026 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1903032","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146096547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Transformer-Based Cross-Modal Coattention Framework for Multimodal Depression Detection 基于变压器的多模态抑郁检测跨模态共注意框架
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-14 DOI: 10.1155/int/1866250
Weitong Guo, Ziyu Lin, Xiangguo Li, Yaping Xu, Sifu Zhang, Hongwu Yang

This study introduces an innovative cross-modal coattention network (CMCAN) framework, specifically designed to tackle the challenges of temporal misalignment and modality-specific feature preservation in multimodal depression detection. The architecture comprises two fundamental components: (1) guided multihead attention, which facilitates context-aware interactions across modalities, and (2) dedicated self-attention pathways that ensure the preservation of key unimodal features. To enhance the estimation of depression severity, a cascaded fusion strategy is employed, combining feature superposition with hierarchical stacking. When evaluated on a Chinese localized depression dataset, CMCAN demonstrates exceptional performance, achieving optimal results (accuracy: 0.839; precision: 0.829; recall: 0.863) with its audiovisual guided coattention module (AVGA (SA (V), SA (A))) comprising three cascaded layers. The framework consistently surpasses unimodal baselines across various emotional valence stimuli (positive, neutral, and negative) and achieves state-of-the-art performance on AVEC 2014 (MAE: 5.38). Comprehensive ablation studies validate the effectiveness of individual components, whereas comparative analyses demonstrate significant improvements over existing multimodal fusion approaches. These findings underscore the robustness and generalizability of CMCAN, validating its effectiveness in harmonizing cross-modal synergy while preserving modality-specific features, thereby advancing practical solutions for automated depression detection.

本研究引入了一个创新的跨模态共注意网络(CMCAN)框架,专门设计用于解决多模态抑郁检测中时间错位和模态特定特征保存的挑战。该体系结构包括两个基本组成部分:(1)引导多重注意力,促进跨模态的上下文感知交互;(2)专用自注意力路径,确保保留关键的单模态特征。为了提高抑郁症严重程度的估计,采用了层次化叠加和特征叠加相结合的级联融合策略。当在中国局部抑郁症数据集上进行评估时,CMCAN表现出优异的性能,其视听引导共注意模块(AVGA (SA (V), SA (a))由三个级联层组成,达到了最佳结果(准确率:0.839,精密度:0.829,召回率:0.863)。该框架在各种情绪效价刺激(积极、中性和消极)中始终超过单峰基线,并在AVEC 2014 (MAE: 5.38)中达到了最先进的表现。综合消融研究证实了单个组件的有效性,而对比分析则证明了现有多模态融合方法的显著改进。这些发现强调了CMCAN的稳健性和普遍性,验证了其在保持模态特定特征的同时协调跨模态协同作用的有效性,从而为自动抑郁症检测提供了实用的解决方案。
{"title":"A Transformer-Based Cross-Modal Coattention Framework for Multimodal Depression Detection","authors":"Weitong Guo,&nbsp;Ziyu Lin,&nbsp;Xiangguo Li,&nbsp;Yaping Xu,&nbsp;Sifu Zhang,&nbsp;Hongwu Yang","doi":"10.1155/int/1866250","DOIUrl":"https://doi.org/10.1155/int/1866250","url":null,"abstract":"<p>This study introduces an innovative cross-modal coattention network (CMCAN) framework, specifically designed to tackle the challenges of temporal misalignment and modality-specific feature preservation in multimodal depression detection. The architecture comprises two fundamental components: (1) guided multihead attention, which facilitates context-aware interactions across modalities, and (2) dedicated self-attention pathways that ensure the preservation of key unimodal features. To enhance the estimation of depression severity, a cascaded fusion strategy is employed, combining feature superposition with hierarchical stacking. When evaluated on a Chinese localized depression dataset, CMCAN demonstrates exceptional performance, achieving optimal results (accuracy: 0.839; precision: 0.829; recall: 0.863) with its audiovisual guided coattention module (AVGA (SA (V), SA (A))) comprising three cascaded layers. The framework consistently surpasses unimodal baselines across various emotional valence stimuli (positive, neutral, and negative) and achieves state-of-the-art performance on AVEC 2014 (MAE: 5.38). Comprehensive ablation studies validate the effectiveness of individual components, whereas comparative analyses demonstrate significant improvements over existing multimodal fusion approaches. These findings underscore the robustness and generalizability of CMCAN, validating its effectiveness in harmonizing cross-modal synergy while preserving modality-specific features, thereby advancing practical solutions for automated depression detection.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2026 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1866250","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146007343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Loan Approval Prediction With SHAP-Guided Feature Selection and LIME-Based Model Interpretability in a Multiclassifier Context Through a Web-Based Application Development Approach 通过基于web的应用程序开发方法,在多分类器上下文中使用shap引导的特征选择和基于lime的模型可解释性推进贷款审批预测
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-06 DOI: 10.1155/int/8899164
Raisa Akter, Rajib Kumar Halder, Mohammed Nasir Uddin, Md. Ashraf Uddin, Ansam Khraisat, Mijanur Rahman, Md. Kabir Hossain

In today’s dynamic financial environment, bank loan approval systems are crucial for determining credit accessibility and maintaining economic stability. Efficient and accurate mechanisms help financial institutions minimize risks, enhance customer satisfaction, and make informed lending decisions. Traditional evaluation methods, however, often struggle with complex applicant data, underscoring the need for advanced, data-driven approaches. This study proposes an enhanced loan approval prediction framework that integrates SHAP-guided feature selection and LIME-based interpretability within a robust multiclassifier architecture. The methodology includes extensive data preprocessing, handling missing values, and encoding categorical variables, followed by SHAP to identify the most influential features. Using two Kaggle datasets, logistic regression achieved the highest performance, with 86.17% accuracy and 81% AUC on Dataset 1 and 99.06% accuracy on Dataset 2. LIME provided intuitive, visual explanations of model predictions, fostering transparency and trust. In addition, a user-friendly, real-time web application was developed for practical deployment. Overall, the study advances intelligent, interpretable, and efficient loan approval systems for modern banking.

在当今瞬息万变的金融环境中,银行贷款审批制度对于确定信贷可及性和维持经济稳定至关重要。高效和准确的机制有助于金融机构最大限度地降低风险,提高客户满意度,并做出明智的贷款决策。然而,传统的评估方法往往难以处理复杂的申请人数据,因此需要采用先进的、数据驱动的方法。本研究提出了一个增强的贷款审批预测框架,该框架将shap引导的特征选择和基于lime的可解释性集成在一个鲁棒的多分类器架构中。该方法包括广泛的数据预处理、处理缺失值和编码分类变量,然后使用SHAP来识别最具影响力的特征。使用两个Kaggle数据集,逻辑回归达到了最高的性能,在数据集1上的准确率为86.17%,AUC为81%,在数据集2上的准确率为99.06%。LIME为模型预测提供了直观、可视化的解释,促进了透明度和信任。此外,还开发了一个用户友好的实时web应用程序,以供实际部署。总体而言,该研究为现代银行提供了智能、可解释和高效的贷款审批系统。
{"title":"Advancing Loan Approval Prediction With SHAP-Guided Feature Selection and LIME-Based Model Interpretability in a Multiclassifier Context Through a Web-Based Application Development Approach","authors":"Raisa Akter,&nbsp;Rajib Kumar Halder,&nbsp;Mohammed Nasir Uddin,&nbsp;Md. Ashraf Uddin,&nbsp;Ansam Khraisat,&nbsp;Mijanur Rahman,&nbsp;Md. Kabir Hossain","doi":"10.1155/int/8899164","DOIUrl":"https://doi.org/10.1155/int/8899164","url":null,"abstract":"<p>In today’s dynamic financial environment, bank loan approval systems are crucial for determining credit accessibility and maintaining economic stability. Efficient and accurate mechanisms help financial institutions minimize risks, enhance customer satisfaction, and make informed lending decisions. Traditional evaluation methods, however, often struggle with complex applicant data, underscoring the need for advanced, data-driven approaches. This study proposes an enhanced loan approval prediction framework that integrates SHAP-guided feature selection and LIME-based interpretability within a robust multiclassifier architecture. The methodology includes extensive data preprocessing, handling missing values, and encoding categorical variables, followed by SHAP to identify the most influential features. Using two Kaggle datasets, logistic regression achieved the highest performance, with 86.17% accuracy and 81% AUC on Dataset 1 and 99.06% accuracy on Dataset 2. LIME provided intuitive, visual explanations of model predictions, fostering transparency and trust. In addition, a user-friendly, real-time web application was developed for practical deployment. Overall, the study advances intelligent, interpretable, and efficient loan approval systems for modern banking.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2026 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/8899164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145915944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous Model Combinatorial Defense Framework (HMCDF) for Adversarial Attacks 针对对抗性攻击的异构模型组合防御框架
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-28 DOI: 10.1155/int/7868904
Yiqin Lu, Xiong Shen, Zhe Cheng, Zhongshu Mao, Yang Zhang, Jiancheng Qin

Deep learning is widely used in many fields, but the emergence of adversarial examples threatens the application of deep learning. Various methods have been proposed to defend against adversarial attacks. However, existing defense methods either can only detect adversarial examples without restoring their original classes or merely focus on verifying the input category and attempting to recover the classes of adversarial examples while lacking awareness of whether the input has been perturbed. To develop defense approaches that simultaneously achieve both detection and correction capabilities, a heterogeneous model combinatorial defense framework (HMCDF) is proposed for adversarial attacks in this paper. In particular, we first summarize the fundamental operations, block structures, and compositional patterns that constitute the model, while analyzing how these factors influence both the functionality and robustness of the model. According to the differences in the structure of the models, the models can be divided into isomorphic models and heterogeneous models. Then, we combine heterogeneous models to construct a heterogeneous model defense framework. Within this framework, as long as a majority of models can detect adversarial examples and restore their original labels, the voting mechanism used in the framework can determine whether the input has been perturbed, ultimately outputting legitimate labels through collective decision-making. To validate the performance, we conduct extensive experiments on three public datasets: CIFAR-10, SVHN, and Mini-ImageNet. After sufficient analysis of the simulation results, we find that our proposed method outperforms the others for the detection of adversarial attacks generated by the considered attack methods and can recover the classes of the adversarial examples.

深度学习在许多领域都有广泛的应用,但是对抗性例子的出现威胁着深度学习的应用。已经提出了各种防御对抗性攻击的方法。然而,现有的防御方法要么只能检测对抗样本而不能恢复其原始类别,要么仅仅关注于验证输入类别并试图恢复对抗样本的类别,而缺乏对输入是否被干扰的意识。为了开发同时实现检测和纠正能力的防御方法,本文提出了一种针对对抗性攻击的异构模型组合防御框架(HMCDF)。特别是,我们首先总结了构成模型的基本操作、块结构和组合模式,同时分析了这些因素如何影响模型的功能和鲁棒性。根据模型结构的不同,可将模型分为同构模型和异构模型。然后,结合异构模型构建异构模型防御框架。在该框架内,只要大多数模型能够检测到对抗性示例并恢复其原始标签,框架中使用的投票机制就可以确定输入是否受到干扰,最终通过集体决策输出合法标签。为了验证性能,我们在三个公共数据集上进行了广泛的实验:CIFAR-10、SVHN和Mini-ImageNet。经过对仿真结果的充分分析,我们发现我们提出的方法在检测由所考虑的攻击方法产生的对抗性攻击方面优于其他方法,并且可以恢复对抗性示例的类别。
{"title":"Heterogeneous Model Combinatorial Defense Framework (HMCDF) for Adversarial Attacks","authors":"Yiqin Lu,&nbsp;Xiong Shen,&nbsp;Zhe Cheng,&nbsp;Zhongshu Mao,&nbsp;Yang Zhang,&nbsp;Jiancheng Qin","doi":"10.1155/int/7868904","DOIUrl":"https://doi.org/10.1155/int/7868904","url":null,"abstract":"<p>Deep learning is widely used in many fields, but the emergence of adversarial examples threatens the application of deep learning. Various methods have been proposed to defend against adversarial attacks. However, existing defense methods either can only detect adversarial examples without restoring their original classes or merely focus on verifying the input category and attempting to recover the classes of adversarial examples while lacking awareness of whether the input has been perturbed. To develop defense approaches that simultaneously achieve both detection and correction capabilities, a heterogeneous model combinatorial defense framework (HMCDF) is proposed for adversarial attacks in this paper. In particular, we first summarize the fundamental operations, block structures, and compositional patterns that constitute the model, while analyzing how these factors influence both the functionality and robustness of the model. According to the differences in the structure of the models, the models can be divided into isomorphic models and heterogeneous models. Then, we combine heterogeneous models to construct a heterogeneous model defense framework. Within this framework, as long as a majority of models can detect adversarial examples and restore their original labels, the voting mechanism used in the framework can determine whether the input has been perturbed, ultimately outputting legitimate labels through collective decision-making. To validate the performance, we conduct extensive experiments on three public datasets: CIFAR-10, SVHN, and Mini-ImageNet. After sufficient analysis of the simulation results, we find that our proposed method outperforms the others for the detection of adversarial attacks generated by the considered attack methods and can recover the classes of the adversarial examples.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7868904","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145909204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence Applicability in the Insurance Industry: A Scientometric and Content Analysis Approach 人工智能在保险业的适用性:科学计量学和内容分析方法
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-28 DOI: 10.1155/int/8864251
Rasha Atlasi, Sorayya Rezayi, Abdollah Mahdavi, Masoud Amanzadeh, Roya Naemi

Introduction

To reduce costs, make efficient decisions, grow the market sustainably, and profit, private insurance companies must increase their computing power for big data analysis by using artificial intelligence (AI) algorithms. In this review, we build upon the existing literature on AI applications in insurance and provide a comprehensive review to identify obstacles to future research.

Materials and Methods

A search was conducted on the Web of Sciences (WOS) database until January 5th, 2025. Using the terms AI and insurance, 6913 articles were extracted from the database search and they were reviewed by two experts based on the inclusion/exclusion criteria. In the end, 76 articles were included in the study and then scientometric and content analysis were carried out on them.

Results

Based on recent studies, the volume of scientific publications on AI applications in the insurance industry has grown significantly since 2022. China (n = 34), the United States of America (n = 14), Belgium (n = 13), the United Kingdom (n = 12), Spain (n = 10), and Egypt (n = 9) are the leading contributors to this research domain. The findings highlight that AI has been integrated into the insurance sector across seven major categories. However, critical research gaps remain, classified into three overarching stages: pre-AI implementation, focusing on challenges related to data readiness, regulatory compliance, and organizational preparedness; AI application areas, addressing the scope, effectiveness, and ethical concerns of AI-driven solutions; and post-AI implementation, examining long-term impacts, performance evaluations, and continuous improvements. To bridge these gaps, future research should explore these three stages in depth, ensuring a more comprehensive and sustainable integration of AI in the insurance industry.

Conclusion

In today’s competitive market, insurance managers should be aware of how AI can help organizations provide innovative services and achieve valuable results. Therefore, future research should leverage the gaps identified in this study to introduce new and innovative algorithms for insurance data analysis in the modern world, thereby increasing profitability and reducing costs for insurance companies.

为了降低成本、做出高效决策、持续增长市场和盈利,私营保险公司必须通过使用人工智能(AI)算法来提高大数据分析的计算能力。在这篇综述中,我们以现有的关于人工智能在保险中的应用的文献为基础,并提供了一个全面的综述,以确定未来研究的障碍。材料与方法检索Web of Sciences (WOS)数据库至2025年1月5日。使用术语AI和保险,从数据库检索中提取6913篇文章,并由两位专家根据纳入/排除标准对其进行审查。最终纳入76篇文献,对其进行科学计量和内容分析。根据最近的研究,自2022年以来,关于人工智能在保险行业应用的科学出版物数量显着增长。中国(n = 34)、美国(n = 14)、比利时(n = 13)、英国(n = 12)、西班牙(n = 10)和埃及(n = 9)是该研究领域的主要贡献者。调查结果强调,人工智能已被纳入保险行业的七个主要类别。然而,关键的研究差距仍然存在,分为三个总体阶段:人工智能实施前,重点关注与数据准备、法规遵从性和组织准备相关的挑战;人工智能应用领域,解决人工智能驱动解决方案的范围、有效性和伦理问题;以及人工智能实施后,检查长期影响、绩效评估和持续改进。为了弥补这些差距,未来的研究应该深入探索这三个阶段,确保人工智能在保险业的更全面、更可持续的融合。在当今竞争激烈的市场中,保险经理应该意识到人工智能如何帮助组织提供创新服务并取得有价值的成果。因此,未来的研究应该利用本研究中发现的差距,为现代世界的保险数据分析引入新的创新算法,从而提高保险公司的盈利能力并降低成本。
{"title":"Artificial Intelligence Applicability in the Insurance Industry: A Scientometric and Content Analysis Approach","authors":"Rasha Atlasi,&nbsp;Sorayya Rezayi,&nbsp;Abdollah Mahdavi,&nbsp;Masoud Amanzadeh,&nbsp;Roya Naemi","doi":"10.1155/int/8864251","DOIUrl":"https://doi.org/10.1155/int/8864251","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <h3> Introduction</h3>\u0000 \u0000 <p>To reduce costs, make efficient decisions, grow the market sustainably, and profit, private insurance companies must increase their computing power for big data analysis by using artificial intelligence (AI) algorithms. In this review, we build upon the existing literature on AI applications in insurance and provide a comprehensive review to identify obstacles to future research.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Materials and Methods</h3>\u0000 \u0000 <p>A search was conducted on the Web of Sciences (WOS) database until January 5<sup>th</sup>, 2025. Using the terms AI and insurance, 6913 articles were extracted from the database search and they were reviewed by two experts based on the inclusion/exclusion criteria. In the end, 76 articles were included in the study and then scientometric and content analysis were carried out on them.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Based on recent studies, the volume of scientific publications on AI applications in the insurance industry has grown significantly since 2022. China (<i>n</i> = 34), the United States of America (<i>n</i> = 14), Belgium (<i>n</i> = 13), the United Kingdom (<i>n</i> = 12), Spain (<i>n</i> = 10), and Egypt (<i>n</i> = 9) are the leading contributors to this research domain. The findings highlight that AI has been integrated into the insurance sector across seven major categories. However, critical research gaps remain, classified into three overarching stages: pre-AI implementation, focusing on challenges related to data readiness, regulatory compliance, and organizational preparedness; AI application areas, addressing the scope, effectiveness, and ethical concerns of AI-driven solutions; and post-AI implementation, examining long-term impacts, performance evaluations, and continuous improvements. To bridge these gaps, future research should explore these three stages in depth, ensuring a more comprehensive and sustainable integration of AI in the insurance industry.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>In today’s competitive market, insurance managers should be aware of how AI can help organizations provide innovative services and achieve valuable results. Therefore, future research should leverage the gaps identified in this study to introduce new and innovative algorithms for insurance data analysis in the modern world, thereby increasing profitability and reducing costs for insurance companies.</p>\u0000 </section>\u0000 </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/8864251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145905146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dependency Parsing-Enhanced Conversational Knowledge-Based Question Answering System 依赖分析增强会话知识问答系统
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-12-21 DOI: 10.1155/int/1977785
Jinhao Zhang, Xu Zheng, Ming Sun, Jinchuan Zhang, Qian Huang, Ling Tian

Contextual information parsing is one of the most important subtasks of conversational KBQA. However, existing methods often assume the independence of utterance and model them in isolation. In this paper, we propose a Dependency paRsing-Enhanced converSational queStion AnswerinG systEm, DRESSAGE, which can effectively model long-range semantic dependencies in the conversation history. This is a multitask neural semantic parsing model. The model can perform explicit dependency parsing for several history questions and the current question and enhance the entity recognition module and the question encoding module with the parsing tree. The performance of the DRESSAGE model is tested on the widely used CSQA dataset and gets SOTA in the overall effect, which proves the effectiveness of this model.

上下文信息解析是会话式KBQA最重要的子任务之一。然而,现有的方法往往假设话语的独立性,并孤立地对其进行建模。在本文中,我们提出了一个依赖解析增强的会话问答系统DRESSAGE,它可以有效地对会话历史中的远程语义依赖进行建模。这是一个多任务神经语义分析模型。该模型可以对多个历史问题和当前问题进行显式的依赖解析,并用解析树增强了实体识别模块和问题编码模块。在广泛使用的CSQA数据集上对DRESSAGE模型的性能进行了测试,总体效果达到了SOTA,证明了该模型的有效性。
{"title":"Dependency Parsing-Enhanced Conversational Knowledge-Based Question Answering System","authors":"Jinhao Zhang,&nbsp;Xu Zheng,&nbsp;Ming Sun,&nbsp;Jinchuan Zhang,&nbsp;Qian Huang,&nbsp;Ling Tian","doi":"10.1155/int/1977785","DOIUrl":"https://doi.org/10.1155/int/1977785","url":null,"abstract":"<p>Contextual information parsing is one of the most important subtasks of conversational KBQA. However, existing methods often assume the independence of utterance and model them in isolation. In this paper, we propose a Dependency paRsing-Enhanced converSational queStion AnswerinG systEm, DRESSAGE, which can effectively model long-range semantic dependencies in the conversation history. This is a multitask neural semantic parsing model. The model can perform explicit dependency parsing for several history questions and the current question and enhance the entity recognition module and the question encoding module with the parsing tree. The performance of the DRESSAGE model is tested on the widely used CSQA dataset and gets SOTA in the overall effect, which proves the effectiveness of this model.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1977785","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DUAL: A Dual-Stage Approach for Facial Expression Recognition Based on Contrastive Learning 基于对比学习的双阶段面部表情识别方法
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-27 DOI: 10.1155/int/7401168
Anting Zhu, Xingxing Jia, Longfei Yang, Huiyu Zhou, Wei Su

Facial expression recognition (FER) remains a challenging task in computer vision. Recent works have shown excellent performance in overall recognition accuracy, but its accuracy significantly decreases when recognizing similar expressions. This is due to interclass homogeneity and intraclass heterogeneity. To address these issues, we propose a novel dual-stage network called DUAL, inspired by contrastive learning. First, we increase the distance between negative samples while reducing the distance between positive ones. This is achieved by dynamically updating pairs of comparison samples. Second, we introduce a two-stage network architecture. The first stage uses two branches to extract image features and facial keypoint features. These branches interact to learn coarse-grained features through mutual guidance. The second stage focuses on fine-grained features using scale-specific residual blocks. This allows the model to identify facial regions that are critical for recognizing expressions. We conducted extensive experiments on multiple datasets. The results show that DUAL surpasses state-of-the-art models in items of performance. Additionally, the model shows high accuracy even in noisy conditions, highlighting its robustness.

面部表情识别(FER)是计算机视觉领域一个具有挑战性的课题。近年来的研究成果在整体识别准确率上表现优异,但在识别相似表达时准确率明显下降。这是由于阶级间的同质性和阶级内的异质性。为了解决这些问题,我们提出了一种新的双阶段网络,称为DUAL,灵感来自对比学习。首先,我们增加了负样本之间的距离,同时减少了正样本之间的距离。这是通过动态更新成对的比较样本实现的。其次,我们介绍了一个两阶段的网络架构。第一阶段使用两个分支提取图像特征和人脸关键点特征。这些分支相互作用,通过相互指导来学习粗粒度的特性。第二阶段侧重于细粒度特征,使用特定规模的残差块。这使得模型能够识别对识别表情至关重要的面部区域。我们在多个数据集上进行了广泛的实验。结果表明,DUAL在性能项目上超过了最先进的模型。此外,即使在噪声条件下,该模型也显示出较高的精度,突出了其鲁棒性。
{"title":"DUAL: A Dual-Stage Approach for Facial Expression Recognition Based on Contrastive Learning","authors":"Anting Zhu,&nbsp;Xingxing Jia,&nbsp;Longfei Yang,&nbsp;Huiyu Zhou,&nbsp;Wei Su","doi":"10.1155/int/7401168","DOIUrl":"https://doi.org/10.1155/int/7401168","url":null,"abstract":"<p>Facial expression recognition (FER) remains a challenging task in computer vision. Recent works have shown excellent performance in overall recognition accuracy, but its accuracy significantly decreases when recognizing similar expressions. This is due to interclass homogeneity and intraclass heterogeneity. To address these issues, we propose a novel dual-stage network called DUAL, inspired by contrastive learning. First, we increase the distance between negative samples while reducing the distance between positive ones. This is achieved by dynamically updating pairs of comparison samples. Second, we introduce a two-stage network architecture. The first stage uses two branches to extract image features and facial keypoint features. These branches interact to learn coarse-grained features through mutual guidance. The second stage focuses on fine-grained features using scale-specific residual blocks. This allows the model to identify facial regions that are critical for recognizing expressions. We conducted extensive experiments on multiple datasets. The results show that DUAL surpasses state-of-the-art models in items of performance. Additionally, the model shows high accuracy even in noisy conditions, highlighting its robustness.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/7401168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145625981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-Explainers: A Unified Ensemble Approach for Multifaceted XAI 元解释器:面向多面XAI的统一集成方法
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-26 DOI: 10.1155/int/4841666
Marilyn Bello, Rosalís Amador, María-Matilde García, Rafael Bello, Óscar Cordón, Francisco Herrera

Artificial intelligence (AI) systems are increasingly adopted in high-stakes domains such as healthcare and finance, so the demand for transparency and interpretability has grown substantially. EXplainable AI (XAI) methods have emerged to address this challenge, but individual techniques often offer limited, fragmented insights. This paper introduces Meta-explainers, a novel ensemble-based XAI framework that integrates multiple explanation types—specifically relevance-based and counterfactual methods—into unified, multifaceted and complementary meta-explanations. Inspired by meta-classification principles, our approach structures the explanation process into five stages: generation, grouping, evaluation, aggregation, and visualization. Each stage is designed to preserve the unique strengths of individual XAI techniques while enhancing their interpretability and coherence when combined. Experimental results on both image (MNIST) and tabular (Breast Cancer) datasets show that Meta-explainers consistently outperform individual and state-of-the-art ensemble explanation methods in terms of explanation quality, as measured by established metrics. This work paves the way toward more holistic and user-centered AI explainability with a flexible methodology that can be extended to incorporate additional explanation paradigms.

人工智能(AI)系统越来越多地应用于医疗保健和金融等高风险领域,因此对透明度和可解释性的需求大幅增长。可解释的人工智能(XAI)方法已经出现,以应对这一挑战,但单个技术通常提供有限的,碎片化的见解。本文介绍了元解释器,这是一种新颖的基于集成的XAI框架,它将多种解释类型(特别是基于关联和反事实的方法)集成到统一的、多方面的和互补的元解释中。受元分类原理的启发,我们的方法将解释过程分为五个阶段:生成、分组、评估、聚合和可视化。每个阶段的设计都是为了保留单个XAI技术的独特优势,同时增强它们在组合时的可解释性和一致性。在图像(MNIST)和表格(乳腺癌)数据集上的实验结果表明,就解释质量而言,元解释器始终优于个体和最先进的集成解释方法。这项工作为更全面和以用户为中心的人工智能可解释性铺平了道路,它采用了一种灵活的方法,可以扩展到包含其他解释范式。
{"title":"Meta-Explainers: A Unified Ensemble Approach for Multifaceted XAI","authors":"Marilyn Bello,&nbsp;Rosalís Amador,&nbsp;María-Matilde García,&nbsp;Rafael Bello,&nbsp;Óscar Cordón,&nbsp;Francisco Herrera","doi":"10.1155/int/4841666","DOIUrl":"https://doi.org/10.1155/int/4841666","url":null,"abstract":"<p>Artificial intelligence (AI) systems are increasingly adopted in high-stakes domains such as healthcare and finance, so the demand for transparency and interpretability has grown substantially. EXplainable AI (XAI) methods have emerged to address this challenge, but individual techniques often offer limited, fragmented insights. This paper introduces Meta-explainers, a novel ensemble-based XAI framework that integrates multiple explanation types—specifically relevance-based and counterfactual methods—into unified, multifaceted and complementary meta-explanations. Inspired by meta-classification principles, our approach structures the explanation process into five stages: generation, grouping, evaluation, aggregation, and visualization. Each stage is designed to preserve the unique strengths of individual XAI techniques while enhancing their interpretability and coherence when combined. Experimental results on both image (MNIST) and tabular (Breast Cancer) datasets show that Meta-explainers consistently outperform individual and state-of-the-art ensemble explanation methods in terms of explanation quality, as measured by established metrics. This work paves the way toward more holistic and user-centered AI explainability with a flexible methodology that can be extended to incorporate additional explanation paradigms.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4841666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145626361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Ancient Chinese Word Segmentation With Knowledge-Enhanced Prompting for Large Language Models 基于知识增强提示的大型语言模型古汉语分词改进
IF 3.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-11-26 DOI: 10.1155/int/9612240
Meng-Tian Tang, Cheng-Gang Mi

This paper introduces a cost-effective prompt optimization strategy for ancient Chinese word segmentation using large language models, aiming to mitigate the substantial computational resources and training expenses of fine-tuning. We developed two knowledge-enhanced frameworks, a General Knowledge Prompt framework and a Domain-Specific Knowledge Prompt framework, and evaluated their effectiveness across various ancient Chinese corpora using seven mainstream LLMs, including ERNIE Bot, Qwen, SparkDesk, DeepSeek, ChatGPT, Gemini, and Copilot. Our findings confirm that both prompt frameworks enhance the segmentation capability of LLMs to varying extents, with the Domain-Specific Knowledge Prompt framework yielding the most significant improvements. Notably, the DeepSeek model achieves 94.01% F1 score (94.24% precision, 93.79% recall) on the test set, while the Qwen model demonstrates a remarkable 15.73% increase in the F1 score with the Domain-Specific Knowledge Prompt framework. Our ablation studies indicate that the entries Rules and Examples are the most crucial to the success of prompt frameworks, effectively addressing the challenges of rule inconsistency and insufficient annotated data.

本文提出了一种基于大型语言模型的古汉语分词快速优化策略,旨在减少大量的计算资源和训练费用。我们开发了两个知识增强框架,一个是通用知识提示框架,一个是特定领域知识提示框架,并使用七个主流llm(包括ERNIE Bot、Qwen、SparkDesk、DeepSeek、ChatGPT、Gemini和Copilot)评估了它们在各种古代汉语语料库中的有效性。我们的研究结果证实,这两种提示框架都在不同程度上增强了法学硕士的分割能力,其中领域特定知识提示框架的改进最为显著。值得注意的是,DeepSeek模型在测试集上获得了94.01%的F1分数(准确率94.24%,召回率93.79%),而Qwen模型在特定领域知识提示框架下的F1分数提高了15.73%。我们的消融研究表明,条目规则和示例是提示框架成功的最关键,有效地解决了规则不一致和注释数据不足的挑战。
{"title":"Improving Ancient Chinese Word Segmentation With Knowledge-Enhanced Prompting for Large Language Models","authors":"Meng-Tian Tang,&nbsp;Cheng-Gang Mi","doi":"10.1155/int/9612240","DOIUrl":"https://doi.org/10.1155/int/9612240","url":null,"abstract":"<p>This paper introduces a cost-effective prompt optimization strategy for ancient Chinese word segmentation using large language models, aiming to mitigate the substantial computational resources and training expenses of fine-tuning. We developed two knowledge-enhanced frameworks, a General Knowledge Prompt framework and a Domain-Specific Knowledge Prompt framework, and evaluated their effectiveness across various ancient Chinese corpora using seven mainstream LLMs, including ERNIE Bot, Qwen, SparkDesk, DeepSeek, ChatGPT, Gemini, and Copilot. Our findings confirm that both prompt frameworks enhance the segmentation capability of LLMs to varying extents, with the Domain-Specific Knowledge Prompt framework yielding the most significant improvements. Notably, the DeepSeek model achieves 94.01% <i>F</i>1 score (94.24% precision, 93.79% recall) on the test set, while the Qwen model demonstrates a remarkable 15.73% increase in the <i>F</i>1 score with the Domain-Specific Knowledge Prompt framework. Our ablation studies indicate that the entries Rules and Examples are the most crucial to the success of prompt frameworks, effectively addressing the challenges of rule inconsistency and insufficient annotated data.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9612240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145626360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Intelligent Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1