Product Recommendation System With Machine Learning Algorithms for SME Banking

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2024-10-28 DOI:10.1155/2024/5585575
Ilker Met, Ayfer Erkoc, Sadi Evren Seker, Mehmet Ali Erturk, Baha Ulug
{"title":"Product Recommendation System With Machine Learning Algorithms for SME Banking","authors":"Ilker Met,&nbsp;Ayfer Erkoc,&nbsp;Sadi Evren Seker,&nbsp;Mehmet Ali Erturk,&nbsp;Baha Ulug","doi":"10.1155/2024/5585575","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the present era, where competition pervades across all domains, profitability holds crucial economic importance for numerous companies, including the banking industry. Offering the right products to customers is a fundamental problem that directly affects banks’ net revenue. Machine learning (ML) approaches can address this issue using customer behavior analysis from historical customer data. This study addresses the issue by processing customer transactions using a bank’s current account debt (CAD) product with state-of-the-art ML approaches. In the first step, exploratory data analysis (EDA) is performed to examine the data and detect patterns and anomalies. Then, different regression methods (tree-based methods) are tested to analyze the model’s performance. The obtained results show that the light gradient boosting machine (LGBM) algorithm outperforms other methods with an 84% accuracy rate in the light gradient boosting algorithm, which is the most accurate of the three methods used.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5585575","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5585575","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In the present era, where competition pervades across all domains, profitability holds crucial economic importance for numerous companies, including the banking industry. Offering the right products to customers is a fundamental problem that directly affects banks’ net revenue. Machine learning (ML) approaches can address this issue using customer behavior analysis from historical customer data. This study addresses the issue by processing customer transactions using a bank’s current account debt (CAD) product with state-of-the-art ML approaches. In the first step, exploratory data analysis (EDA) is performed to examine the data and detect patterns and anomalies. Then, different regression methods (tree-based methods) are tested to analyze the model’s performance. The obtained results show that the light gradient boosting machine (LGBM) algorithm outperforms other methods with an 84% accuracy rate in the light gradient boosting algorithm, which is the most accurate of the three methods used.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向中小企业银行业务的机器学习算法产品推荐系统
当今时代,竞争充斥着各个领域,盈利能力对包括银行业在内的众多企业来说具有至关重要的经济意义。向客户提供合适的产品是直接影响银行净收入的根本问题。机器学习(ML)方法可以利用历史客户数据中的客户行为分析来解决这一问题。本研究利用最先进的 ML 方法处理了使用银行往来账户债务(CAD)产品的客户交易,从而解决了这一问题。第一步,进行探索性数据分析 (EDA),以检查数据并检测模式和异常。然后,测试不同的回归方法(基于树的方法)以分析模型的性能。结果显示,光梯度提升机(LGBM)算法优于其他方法,光梯度提升算法的准确率为 84%,是所使用的三种方法中准确率最高的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
A Graph Neural Network-Based Approach With Dynamic Multiqueue Optimization Scheduling (DMQOS) for Efficient Fault Tolerance and Load Balancing in Cloud Computing DocFuzz: A Directed Fuzzing Method Based on a Feedback Mechanism Mutator Two-View Image Semantic Cooperative Nonorthogonal Transmission in Distributed Edge Networks Reliable and Timely Short-Packet Communications in Joint Communication and Over-the-Air Computation Offloading Systems: Analysis and Optimization The Effect of User Behavior in Online Banking on Cybersecurity Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1