Reconstruction of the Motion of Traffic Accident Vehicle in the Vehicle-Mounted Video Based on Direct Linear Transform

IF 2 4区 工程技术 Q2 ENGINEERING, CIVIL Journal of Advanced Transportation Pub Date : 2024-10-28 DOI:10.1155/2024/5793435
Hao Feng, Feng Chen, Weiwei Heng
{"title":"Reconstruction of the Motion of Traffic Accident Vehicle in the Vehicle-Mounted Video Based on Direct Linear Transform","authors":"Hao Feng,&nbsp;Feng Chen,&nbsp;Weiwei Heng","doi":"10.1155/2024/5793435","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Based on the principle of direct linear transformation (DLT) in close-range photogrammetry, a method was proposed for reconstructing the motion states of the host vehicle and other vehicles based on vehicle-mounted videos. To verify the effectiveness and accuracy of the method, validation experiments were designed. Under two typical operating states, steering and straight driving, the motion states of the host vehicle and other vehicles (including trajectory, distance, speed, and acceleration) were reconstructed from the vehicle-mounted video. In the experiments, high-precision inertial navigation was installed on the other vehicle to record real-time motion data of the vehicle. Finally, in order to compare and analyze the reconstructed video results with the vehicle’s actual motion data, the recorded motion data were matched and synchronized to the same time axis as the vehicle-mounted videos through a GPS timing device. The experimental result shows that the reconstructed trajectory results based on this method can generally reflect the vehicle’s actual trajectory, with an average deviation of less than 7.4%; the reconstructed distance results have an average deviation of less than 9.3%; the reconstructed speed results have an average deviation of less than 7.3%; the reconstructed acceleration results can reflect the vehicle’s acceleration or deceleration states. The results of this study provide an effective solution for obtaining important parameters of vehicles in accident reconstruction research, such as the trajectory, speed, distance, and acceleration or deceleration, and it has significant practical value for applications.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5793435","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5793435","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the principle of direct linear transformation (DLT) in close-range photogrammetry, a method was proposed for reconstructing the motion states of the host vehicle and other vehicles based on vehicle-mounted videos. To verify the effectiveness and accuracy of the method, validation experiments were designed. Under two typical operating states, steering and straight driving, the motion states of the host vehicle and other vehicles (including trajectory, distance, speed, and acceleration) were reconstructed from the vehicle-mounted video. In the experiments, high-precision inertial navigation was installed on the other vehicle to record real-time motion data of the vehicle. Finally, in order to compare and analyze the reconstructed video results with the vehicle’s actual motion data, the recorded motion data were matched and synchronized to the same time axis as the vehicle-mounted videos through a GPS timing device. The experimental result shows that the reconstructed trajectory results based on this method can generally reflect the vehicle’s actual trajectory, with an average deviation of less than 7.4%; the reconstructed distance results have an average deviation of less than 9.3%; the reconstructed speed results have an average deviation of less than 7.3%; the reconstructed acceleration results can reflect the vehicle’s acceleration or deceleration states. The results of this study provide an effective solution for obtaining important parameters of vehicles in accident reconstruction research, such as the trajectory, speed, distance, and acceleration or deceleration, and it has significant practical value for applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于直接线性变换的车载视频中交通事故车辆运动重构
根据近距离摄影测量中的直接线性变换(DLT)原理,提出了一种基于车载视频重建主机和其他车辆运动状态的方法。为了验证该方法的有效性和准确性,设计了验证实验。在转向和直线行驶两种典型运行状态下,通过车载视频重建了主机车辆和其他车辆的运动状态(包括轨迹、距离、速度和加速度)。在实验中,在另一辆车上安装了高精度惯性导航,以记录车辆的实时运动数据。最后,为了将重建的视频结果与车辆的实际运动数据进行比较和分析,通过 GPS 定时器将记录的运动数据与车载视频进行匹配并同步到同一时间轴上。实验结果表明,基于该方法重建的轨迹结果基本能反映车辆的实际轨迹,平均偏差小于 7.4%;重建的距离结果平均偏差小于 9.3%;重建的速度结果平均偏差小于 7.3%;重建的加速度结果能反映车辆的加速或减速状态。该研究结果为获取事故重建研究中车辆的轨迹、速度、距离、加减速等重要参数提供了有效的解决方案,具有重要的实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Transportation
Journal of Advanced Transportation 工程技术-工程:土木
CiteScore
5.00
自引率
8.70%
发文量
466
审稿时长
7.3 months
期刊介绍: The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport. It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest. Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.
期刊最新文献
An Interval Integrated Optimization to Air-Cargo Hub Network Design and Airline Fleet Planning A Study on Driving Load While Overtaking on Mountainous Two-Lane Highways Based on Physiological Characteristics Evaluating Transit-Oriented Development Performance: An Integrated Approach Using Multisource Big Data and Interpretable Machine Learning B∗ Algorithm: Multiobjective Path Planning for Flexible Buses Traffic System As Long as I Don’t Have to Drive Myself
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1