Tobias G. Meier, Dan J. Bower, Tim Lichtenberg, Mark Hammond, Paul J. Tackley, Raymond T. Pierrehumbert, José A. Caballero, Shang-Min Tsai, Megan Weiner Mansfield, Nicola Tosi, Philipp Baumeister
{"title":"Geodynamics of Super-Earth GJ 486b","authors":"Tobias G. Meier, Dan J. Bower, Tim Lichtenberg, Mark Hammond, Paul J. Tackley, Raymond T. Pierrehumbert, José A. Caballero, Shang-Min Tsai, Megan Weiner Mansfield, Nicola Tosi, Philipp Baumeister","doi":"10.1029/2024JE008491","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Many super-Earths are on very short orbits around their host star and, therefore, more likely to be tidally locked. Because this locking can lead to a strong contrast between the dayside and nightside surface temperatures, these super-Earths could exhibit mantle convection patterns and tectonics that could differ significantly from those observed in the present-day solar system. The presence of an atmosphere, however, would allow transport of heat from the dayside toward the nightside and thereby reduce the surface temperature contrast between the two hemispheres. On rocky planets, atmospheric and geodynamic regimes are closely linked, which directly connects the question of atmospheric thickness to the potential interior dynamics of the planet. Here, we study the interior dynamics of super-Earth GJ 486b (<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>=</mo>\n <mn>1.34</mn>\n </mrow>\n <annotation> $R=1.34$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mo>⊕</mo>\n </msub>\n </mrow>\n <annotation> ${R}_{\\oplus }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mn>3.0</mn>\n </mrow>\n <annotation> $M=3.0$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mo>⊕</mo>\n </msub>\n </mrow>\n <annotation> ${M}_{\\oplus }$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mtext>eq</mtext>\n </msub>\n <mo>≈</mo>\n <mn>700</mn>\n </mrow>\n <annotation> ${\\mathrm{T}}_{\\text{eq}}\\approx 700$</annotation>\n </semantics></math> K), which is one of the most suitable M-dwarf super-Earth candidates for retaining an atmosphere produced by degassing from the mantle and magma ocean. We investigate how the geodynamic regime of GJ 486b is influenced by different surface temperature contrasts by varying possible atmospheric circulation regimes. We also investigate how the strength of the lithosphere affects the convection pattern. We find that hemispheric tectonics, the surface expression of degree-1 convection with downwellings forming on one hemisphere and upwelling material rising on the opposite hemisphere, is a consequence of the strong lithosphere rather than surface temperature contrast. Anchored hemispheric tectonics, where downwellings und upwellings have a preferred (day/night) hemisphere, is favored for strong temperature contrasts between the dayside and nightside and higher surface temperatures.</p>\n </section>\n </div>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008491","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008491","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Many super-Earths are on very short orbits around their host star and, therefore, more likely to be tidally locked. Because this locking can lead to a strong contrast between the dayside and nightside surface temperatures, these super-Earths could exhibit mantle convection patterns and tectonics that could differ significantly from those observed in the present-day solar system. The presence of an atmosphere, however, would allow transport of heat from the dayside toward the nightside and thereby reduce the surface temperature contrast between the two hemispheres. On rocky planets, atmospheric and geodynamic regimes are closely linked, which directly connects the question of atmospheric thickness to the potential interior dynamics of the planet. Here, we study the interior dynamics of super-Earth GJ 486b ( , , K), which is one of the most suitable M-dwarf super-Earth candidates for retaining an atmosphere produced by degassing from the mantle and magma ocean. We investigate how the geodynamic regime of GJ 486b is influenced by different surface temperature contrasts by varying possible atmospheric circulation regimes. We also investigate how the strength of the lithosphere affects the convection pattern. We find that hemispheric tectonics, the surface expression of degree-1 convection with downwellings forming on one hemisphere and upwelling material rising on the opposite hemisphere, is a consequence of the strong lithosphere rather than surface temperature contrast. Anchored hemispheric tectonics, where downwellings und upwellings have a preferred (day/night) hemisphere, is favored for strong temperature contrasts between the dayside and nightside and higher surface temperatures.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.