Classifying Magnetic Reconnection Regions Using k-Means Clustering: Applications to Energy Partition

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2024-10-26 DOI:10.1029/2024JA033010
Cara L. Waters, Jonathan P. Eastwood, Naïs Fargette, David L. Newman, Martin V. Goldman
{"title":"Classifying Magnetic Reconnection Regions Using k-Means Clustering: Applications to Energy Partition","authors":"Cara L. Waters,&nbsp;Jonathan P. Eastwood,&nbsp;Naïs Fargette,&nbsp;David L. Newman,&nbsp;Martin V. Goldman","doi":"10.1029/2024JA033010","DOIUrl":null,"url":null,"abstract":"<p>Magnetic reconnection is a fundamental plasma process which facilitates the conversion of magnetic energy to particle energies. This local process both contributes to and is affected by a larger system, being dependent on plasma conditions and transporting energy around the system, such as Earth's magnetosphere. When studying the reconnection process with in situ spacecraft data, it can be difficult to determine where spacecraft are in relation to the reconnection structure. In this work, we use <i>k</i>-means clustering, an unsupervised machine learning technique, to identify regions in a 2.5-D PIC simulation of symmetric magnetic reconnection with conditions comparable to those observed in Earth's magnetotail. This allows energy flux densities to be attributed to these regions. The ion enthalpy flux density is the most dominant form of energy flux density in the outflows, agreeing with previous studies. Poynting flux density may be dominant at some points in the outflows and is only half that of the Poynting flux density in the separatrices. The proportion of outflowing particle energy flux decreases as guide field increases. We find that <i>k</i>-means is beneficial for analyzing data and comparing between simulations and in situ data. This demonstrates an approach which may be applied to large volumes of data to determine statistically different regions within phenomena in simulations and could be extended to in situ observations, applicable to future multi-point missions.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033010","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic reconnection is a fundamental plasma process which facilitates the conversion of magnetic energy to particle energies. This local process both contributes to and is affected by a larger system, being dependent on plasma conditions and transporting energy around the system, such as Earth's magnetosphere. When studying the reconnection process with in situ spacecraft data, it can be difficult to determine where spacecraft are in relation to the reconnection structure. In this work, we use k-means clustering, an unsupervised machine learning technique, to identify regions in a 2.5-D PIC simulation of symmetric magnetic reconnection with conditions comparable to those observed in Earth's magnetotail. This allows energy flux densities to be attributed to these regions. The ion enthalpy flux density is the most dominant form of energy flux density in the outflows, agreeing with previous studies. Poynting flux density may be dominant at some points in the outflows and is only half that of the Poynting flux density in the separatrices. The proportion of outflowing particle energy flux decreases as guide field increases. We find that k-means is beneficial for analyzing data and comparing between simulations and in situ data. This demonstrates an approach which may be applied to large volumes of data to determine statistically different regions within phenomena in simulations and could be extended to in situ observations, applicable to future multi-point missions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用k-Means聚类对磁重联区域进行分类:能量分区应用
磁复连是一种基本的等离子体过程,它有助于将磁能转化为粒子能。这一局部过程对更大的系统既有贡献又受其影响,它依赖于等离子体条件,并在系统(如地球磁层)周围传输能量。利用航天器现场数据研究再连接过程时,很难确定航天器与再连接结构的位置关系。在这项工作中,我们使用 k-means 聚类(一种无监督的机器学习技术)来识别对称磁性再连接 2.5-D PIC 模拟中的区域,这些区域的条件与在地球磁尾观测到的条件相当。这样就可以将能量通量密度归因于这些区域。离子焓通量密度是外流中最主要的能量通量密度形式,这与之前的研究一致。波因廷通量密度在外流的某些点可能占主导地位,但在分离区只有波因廷通量密度的一半。外流粒子能量通量的比例随着导场的增加而降低。我们发现 K-均值法有利于分析数据以及比较模拟数据和现场数据。这展示了一种可应用于大量数据的方法,以确定模拟现象中统计上不同的区域,并可扩展到现场观测,适用于未来的多点任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Calculation and Evaluation of Neutral Winds in the Lower Thermosphere Based on SYISR Observations Solar Activity Effects on the Near-Earth Space Regions During the Descending Phase of Solar Cycle 24 Nocturnal Sporadic Cusp-Type Layer (Esc) Resulting From Anomalous Excess Ionization Over the SAMA Region During the Extreme Magnetic Storm on 11 May 2024 The Curvature of TEC as a Proxy for Ionospheric Amplitude Scintillation Near-Real-Time Identification of the Source of Ionospheric Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1