Cheng Wang, Kang Gao, Zhen Yang, Jinlong Liu, Gang Wu
{"title":"Multidamage Detection of Breathing Cracks in Plate-Like Bridges: Experimental and Numerical Study","authors":"Cheng Wang, Kang Gao, Zhen Yang, Jinlong Liu, Gang Wu","doi":"10.1155/2024/8840611","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Bridges may develop breathing cracks under excessive overloading vehicles, while conventional beam models are ineffective in analyzing the effect of spatial distribution of these cracks. This study proposes a data-driven detection model with the consideration of spatial distribution of breathing cracks that can detect the multiple damage locations and degrees of breathing cracks in plate-like bridges. Firstly, a 2D vehicle–bridge interaction model containing breathing cracks is established, and the damage indicator, contact point displacement variation (CPDV), is calculated using vehicle acceleration data. Next, a dataset with CPDV as the input feature is generated using the finite element method to train the CatBoost-based damage prediction model, which considers the random distribution of single and multiple cracks, as well as the influence of different vehicle speeds. Finally, by calculating the CPDV related to the actual bridge and feeding it into the trained model, the location and degree of the damage can be predicted. The numerical simulation results demonstrate that this approach can accurately detect complex crack information under various vehicle speeds and exhibits robustness against road roughness. A laboratory experiment further confirms the effectiveness, applicability, and feasibility of this method to multiple damage locations and degree of breathing cracks.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8840611","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8840611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bridges may develop breathing cracks under excessive overloading vehicles, while conventional beam models are ineffective in analyzing the effect of spatial distribution of these cracks. This study proposes a data-driven detection model with the consideration of spatial distribution of breathing cracks that can detect the multiple damage locations and degrees of breathing cracks in plate-like bridges. Firstly, a 2D vehicle–bridge interaction model containing breathing cracks is established, and the damage indicator, contact point displacement variation (CPDV), is calculated using vehicle acceleration data. Next, a dataset with CPDV as the input feature is generated using the finite element method to train the CatBoost-based damage prediction model, which considers the random distribution of single and multiple cracks, as well as the influence of different vehicle speeds. Finally, by calculating the CPDV related to the actual bridge and feeding it into the trained model, the location and degree of the damage can be predicted. The numerical simulation results demonstrate that this approach can accurately detect complex crack information under various vehicle speeds and exhibits robustness against road roughness. A laboratory experiment further confirms the effectiveness, applicability, and feasibility of this method to multiple damage locations and degree of breathing cracks.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.