Rezvan Tahouri, Asimina Papoulia, Stefanos Carlström, Felipe Zapata, Jan Marcus Dahlström
{"title":"Relativistic treatment of hole alignment in noble gas atoms","authors":"Rezvan Tahouri, Asimina Papoulia, Stefanos Carlström, Felipe Zapata, Jan Marcus Dahlström","doi":"10.1038/s42005-024-01833-0","DOIUrl":null,"url":null,"abstract":"The development in attosecond physics allows for unprecedented control of atoms and molecules in the time domain. Here, ultrashort pulses are used to prepare atomic ions in specific magnetic states, which may be important for controlling charge migration in molecules. Our work fills the knowledge gap of relativistic hole alignment prepared by femtosecond and attosecond pulses. The research focuses on optimizing the central frequency and duration of pulses to exploit specific spectral features, such as Fano profiles, Cooper minima, and giant resonances. Simulations are performed using the Relativistic Time-Dependent Configuration-Interaction Singles method. Ultrafast hole alignment with large ratios (on the order of one hundred) is observed in the outer-shell hole of argon. An even larger alignment (on the order of one thousand) is observed in the inner-shell hole of xenon. In this work, the authors investigate the distribution of holes with different magnetic quantum numbers in noble gas atoms, ionized by femtosecond and attosecond pulses. They achieve high control over hole alignment by adjusting pulse parameters and exploiting specific spectral features.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01833-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01833-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development in attosecond physics allows for unprecedented control of atoms and molecules in the time domain. Here, ultrashort pulses are used to prepare atomic ions in specific magnetic states, which may be important for controlling charge migration in molecules. Our work fills the knowledge gap of relativistic hole alignment prepared by femtosecond and attosecond pulses. The research focuses on optimizing the central frequency and duration of pulses to exploit specific spectral features, such as Fano profiles, Cooper minima, and giant resonances. Simulations are performed using the Relativistic Time-Dependent Configuration-Interaction Singles method. Ultrafast hole alignment with large ratios (on the order of one hundred) is observed in the outer-shell hole of argon. An even larger alignment (on the order of one thousand) is observed in the inner-shell hole of xenon. In this work, the authors investigate the distribution of holes with different magnetic quantum numbers in noble gas atoms, ionized by femtosecond and attosecond pulses. They achieve high control over hole alignment by adjusting pulse parameters and exploiting specific spectral features.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.