Dynamical clustering and wetting phenomena in inertial active matter

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-10-21 DOI:10.1038/s42005-024-01835-y
Lorenzo Caprini, Davide Breoni, Anton Ldov, Christian Scholz, Hartmut Löwen
{"title":"Dynamical clustering and wetting phenomena in inertial active matter","authors":"Lorenzo Caprini, Davide Breoni, Anton Ldov, Christian Scholz, Hartmut Löwen","doi":"10.1038/s42005-024-01835-y","DOIUrl":null,"url":null,"abstract":"Dynamical clustering is a key feature of active matter systems composed of self-propelled agents that convert environmental energy into mechanical motion. At the micron scale, where overdamped dynamics dominate, particles with opposite motility can obstruct each other’s movement, leading to transient dynamical arrest. This arrest can promote cluster formation and motility-induced phase separation. However, in macroscopic agents, where inertia plays a significant role, clustering is heavily influenced by bounce-back effects during collisions, which can impede cluster growth. Here we present an experiment based on active granular particles, in which inertia can be systematically tuned by changing the shaker frequency. As a result, a set of phenomena driven and controlled by inertia emerges. Before the suppression of clustering, inertia induces a transition in the cluster’s inner structure. For small inertia, clusters are characterized by the crystalline order typical of overdamped particles, while for large inertia clusters with liquid-like order are observed. In addition, in contrast to microswimmers, where active particles wet the boundary by primarily forming clusters attached to the container walls, in an underdamped inertial active system, walls do not favor cluster formation and effectively annihilate motility-induced wetting phenomena. As a consequence, inertia suppresses cluster nucleation at the system boundaries. Active matter systems composed of self-propelled agents exhibit dynamical clustering. In this work, the authors demonstrate that inertia induces a solid-liquid transition within the cluster structure and suppresses wetting phenomena at the container boundary.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01835-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01835-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical clustering is a key feature of active matter systems composed of self-propelled agents that convert environmental energy into mechanical motion. At the micron scale, where overdamped dynamics dominate, particles with opposite motility can obstruct each other’s movement, leading to transient dynamical arrest. This arrest can promote cluster formation and motility-induced phase separation. However, in macroscopic agents, where inertia plays a significant role, clustering is heavily influenced by bounce-back effects during collisions, which can impede cluster growth. Here we present an experiment based on active granular particles, in which inertia can be systematically tuned by changing the shaker frequency. As a result, a set of phenomena driven and controlled by inertia emerges. Before the suppression of clustering, inertia induces a transition in the cluster’s inner structure. For small inertia, clusters are characterized by the crystalline order typical of overdamped particles, while for large inertia clusters with liquid-like order are observed. In addition, in contrast to microswimmers, where active particles wet the boundary by primarily forming clusters attached to the container walls, in an underdamped inertial active system, walls do not favor cluster formation and effectively annihilate motility-induced wetting phenomena. As a consequence, inertia suppresses cluster nucleation at the system boundaries. Active matter systems composed of self-propelled agents exhibit dynamical clustering. In this work, the authors demonstrate that inertia induces a solid-liquid transition within the cluster structure and suppresses wetting phenomena at the container boundary.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
惯性活性物质中的动态聚类和润湿现象
动态聚类是由将环境能量转化为机械运动的自推进剂组成的活性物质系统的一个关键特征。在过阻尼动力学占主导地位的微米尺度上,具有相反运动性的粒子会阻碍彼此的运动,从而导致瞬时动力学停滞。这种停滞会促进集群的形成和运动诱导的相分离。然而,在宏观物剂中,惯性起着重要作用,聚类在很大程度上受到碰撞过程中反弹效应的影响,这会阻碍聚类的生长。在这里,我们介绍一种基于活性颗粒的实验,在这种实验中,可以通过改变振动器的频率来系统地调整惯性。因此,出现了一系列由惯性驱动和控制的现象。在抑制聚类之前,惯性会引起聚类内部结构的转变。在惯性较小的情况下,团簇具有过阻尼粒子典型的晶体阶序特征,而在惯性较大的情况下,则会观察到具有液态阶序的团簇。此外,与微泳器不同的是,在微泳器中,活性粒子主要通过形成附着在容器壁上的簇来润湿边界,而在欠阻尼惯性活性系统中,容器壁不利于簇的形成,并有效地消除了运动引起的润湿现象。因此,惯性抑制了系统边界的团簇成核。由自推进剂组成的活性物质系统表现出动态聚类现象。在这项研究中,作者证明了惯性会诱导团簇结构内的固液转变,并抑制容器边界的润湿现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1