Genes associated with cell modelling provides new insights into spermiation mechanism in Cyprinus carpio

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2024-01-01 DOI:10.1016/j.crbiot.2024.100262
{"title":"Genes associated with cell modelling provides new insights into spermiation mechanism in Cyprinus carpio","authors":"","doi":"10.1016/j.crbiot.2024.100262","DOIUrl":null,"url":null,"abstract":"<div><div>Spermiation, an act of sperm release, depends on several molecular factors. Despite hormonal administration, spermiation failure is a primary concern in certain fishes. In this study, the molecular mechanisms of spermiation have been analyzed in <em>Cyprinus carpio</em> by comparative transcriptomics. Unigenes for <em>C. carpio</em> control (CCC), which were injected with PBS (Phosphate-buffered saline), and <em>C. carpio</em> treated (CCT), which were injected with ovatide, were 107,616 and 133,435, respectively. A total of 93 genes were identified as involved in the spermiation process, including those related to gonadal steroidogenesis, cell growth, cell adhesion, and cytoplasmic matrix formation. The <em>cd63</em>, <em>CENPS</em>, <em>rasa1a,</em> and genes for gonad steroidogenesis, cell growth, cell adhesion, and cytoplasmic matrix formation were analyzed. Gene expression analysis revealed tubulobulbar complexes mediated disengagement of spermatozoa and JAK2 signaling regulated cyst breakage in teleost for the first time. Analysis was done from the changes at the molecular level to the final act of spermiation. Tissue histology analysis was conducted in accordance with the molecular study, which showed structural changes. Induced breeding in fish plays a key role in seed production in aquaculture sector. However, there are several constraints the sector is still facing due to lack of extensive knowledge regarding the mechanisms of spermiation and species-specific response to hormonal dosage. This study is relevant to understand the molecular mechanisms involved in spermiation and the stages which mark as critical point of sperm release after administrating the inducing agent. This study also lays the groundwork for further exploration of species-specific responses to hormonal treatments, aiding sustainable seed production in the fisheries sector.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spermiation, an act of sperm release, depends on several molecular factors. Despite hormonal administration, spermiation failure is a primary concern in certain fishes. In this study, the molecular mechanisms of spermiation have been analyzed in Cyprinus carpio by comparative transcriptomics. Unigenes for C. carpio control (CCC), which were injected with PBS (Phosphate-buffered saline), and C. carpio treated (CCT), which were injected with ovatide, were 107,616 and 133,435, respectively. A total of 93 genes were identified as involved in the spermiation process, including those related to gonadal steroidogenesis, cell growth, cell adhesion, and cytoplasmic matrix formation. The cd63, CENPS, rasa1a, and genes for gonad steroidogenesis, cell growth, cell adhesion, and cytoplasmic matrix formation were analyzed. Gene expression analysis revealed tubulobulbar complexes mediated disengagement of spermatozoa and JAK2 signaling regulated cyst breakage in teleost for the first time. Analysis was done from the changes at the molecular level to the final act of spermiation. Tissue histology analysis was conducted in accordance with the molecular study, which showed structural changes. Induced breeding in fish plays a key role in seed production in aquaculture sector. However, there are several constraints the sector is still facing due to lack of extensive knowledge regarding the mechanisms of spermiation and species-specific response to hormonal dosage. This study is relevant to understand the molecular mechanisms involved in spermiation and the stages which mark as critical point of sperm release after administrating the inducing agent. This study also lays the groundwork for further exploration of species-specific responses to hormonal treatments, aiding sustainable seed production in the fisheries sector.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与细胞建模相关的基因为了解鲤鱼的精子发生机制提供了新的视角
精子萌发是一种精子释放行为,取决于多种分子因素。尽管使用了激素,但精子畸形仍是某些鱼类的主要问题。本研究通过比较转录组学分析了鲤鱼精子发生的分子机制。注射磷酸盐缓冲盐水(PBS)的鲤鱼对照组(CCC)和注射卵磷脂的鲤鱼处理组(CCT)的单基因数分别为 107,616 和 133,435 个。经鉴定,共有 93 个基因参与了精子发生过程,包括与性腺类固醇生成、细胞生长、细胞粘附和细胞质基质形成有关的基因。分析了 cd63、CENPS、rasa1a 以及与性腺类固醇生成、细胞生长、细胞粘附和细胞质基质形成有关的基因。基因表达分析首次揭示了管状球复合体介导的精子脱离和 JAK2 信号调控的远洋鱼类囊肿破裂。分析工作从分子水平的变化一直持续到精子的最终形成。根据分子研究结果进行了组织学分析,结果显示了结构上的变化。鱼类诱导育种在水产养殖业的苗种生产中发挥着关键作用。然而,由于缺乏有关精子发生机制和物种对激素剂量特异性反应的广泛知识,该行业仍面临着一些制约因素。这项研究有助于了解精子萌发的分子机制,以及施用诱导剂后精子释放的临界点阶段。这项研究还为进一步探索物种对激素处理的特异性反应奠定了基础,有助于渔业领域的可持续苗种生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Engineering yeast lipids for production of designer biodiesel Table of Contents Dolastatins and their analogues present a compelling landscape of potential natural and synthetic anticancer drug candidates Drug Discovery, Diagnostic, and therapeutic trends on Mpox: A patent landscape Life cycle and environmental impact assessment of vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1