Effect of surface roughness on the liquid bridge between two rigid spheres

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL Powder Technology Pub Date : 2024-10-20 DOI:10.1016/j.powtec.2024.120377
Yu Yin, Fengyin Liu, Meng Miao, Zhiheng Yuan, Yuqing Tang
{"title":"Effect of surface roughness on the liquid bridge between two rigid spheres","authors":"Yu Yin,&nbsp;Fengyin Liu,&nbsp;Meng Miao,&nbsp;Zhiheng Yuan,&nbsp;Yuqing Tang","doi":"10.1016/j.powtec.2024.120377","DOIUrl":null,"url":null,"abstract":"<div><div>We aimed to investigate the impact of surface roughness on liquid bridges between spherical particles. Sandblasting was used to control the particle size and produce glass beads and plates with different surface roughness. First, by measuring the advancing and receding contact angles of droplets on different rough surfaces, we analyzed the effects of surface roughness on wettability and hysteresis. Next, we used a custom-made liquid-bridge stretching device to measure the capillary forces of the liquid bridges between spherical particles with different surface roughness values. A charge-coupled device camera acquisition system was set up to capture the morphological changes of the liquid bridge during stretching, and Image View software was used to extract the morphological parameters of the liquid bridge. Theoretically, we reasonably simplified and solved the differential equations for the liquid bridge morphology and used the Young–Laplace equation to calculate the theoretical capillary force of the liquid bridge, providing an in-depth analysis of the influence of surface roughness on the capillary force. Finally, we studied the impact of surface roughness on the volume ratio of the liquid bridge during static stretching and the residual liquid remaining after the liquid bridge breaks. Experimental results indicated that, as the surface roughness increased, the hydrophobicity and wettability hysteresis of the solid surface also increased. The increased hydrophobicity of the surface reduces the solid-liquid contact area of the liquid bridges between the particles, making it easier to form “columnar” or “convex” liquid bridges. Additionally, the enhanced wettability hysteresis causes the solid-liquid contact boundary to lag during the stretching of the liquid bridge, resulting in a decrease in the solid-liquid contact angle. These factors directly alter the geometric shape of liquid bridges during static stretching, thereby affecting capillary forces. Meanwhile, the increase in surface roughness weakens the effect of gravity on the morphology of the liquid bridge, resulting in less liquid mass remaining on the lower sphere after the liquid bridge breaks as the surface becomes rougher.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120377"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010210","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to investigate the impact of surface roughness on liquid bridges between spherical particles. Sandblasting was used to control the particle size and produce glass beads and plates with different surface roughness. First, by measuring the advancing and receding contact angles of droplets on different rough surfaces, we analyzed the effects of surface roughness on wettability and hysteresis. Next, we used a custom-made liquid-bridge stretching device to measure the capillary forces of the liquid bridges between spherical particles with different surface roughness values. A charge-coupled device camera acquisition system was set up to capture the morphological changes of the liquid bridge during stretching, and Image View software was used to extract the morphological parameters of the liquid bridge. Theoretically, we reasonably simplified and solved the differential equations for the liquid bridge morphology and used the Young–Laplace equation to calculate the theoretical capillary force of the liquid bridge, providing an in-depth analysis of the influence of surface roughness on the capillary force. Finally, we studied the impact of surface roughness on the volume ratio of the liquid bridge during static stretching and the residual liquid remaining after the liquid bridge breaks. Experimental results indicated that, as the surface roughness increased, the hydrophobicity and wettability hysteresis of the solid surface also increased. The increased hydrophobicity of the surface reduces the solid-liquid contact area of the liquid bridges between the particles, making it easier to form “columnar” or “convex” liquid bridges. Additionally, the enhanced wettability hysteresis causes the solid-liquid contact boundary to lag during the stretching of the liquid bridge, resulting in a decrease in the solid-liquid contact angle. These factors directly alter the geometric shape of liquid bridges during static stretching, thereby affecting capillary forces. Meanwhile, the increase in surface roughness weakens the effect of gravity on the morphology of the liquid bridge, resulting in less liquid mass remaining on the lower sphere after the liquid bridge breaks as the surface becomes rougher.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面粗糙度对两个硬质球体之间液桥的影响
我们的目的是研究表面粗糙度对球形颗粒之间液体桥的影响。我们采用喷砂法控制颗粒大小,并生产出不同表面粗糙度的玻璃珠和玻璃板。首先,通过测量液滴在不同粗糙表面上的前进角和后退角,我们分析了表面粗糙度对润湿性和滞后性的影响。接着,我们使用定制的液桥拉伸装置测量了不同表面粗糙度值的球形颗粒之间液桥的毛细力。为了捕捉液桥在拉伸过程中的形态变化,我们安装了电荷耦合器件摄像采集系统,并使用 Image View 软件提取液桥的形态参数。理论上,我们合理简化并求解了液桥形态的微分方程,并利用 Young-Laplace 方程计算了液桥的理论毛细力,深入分析了表面粗糙度对毛细力的影响。最后,我们研究了表面粗糙度对静拉伸过程中液桥体积比以及液桥断裂后残留液体的影响。实验结果表明,随着表面粗糙度的增加,固体表面的疏水性和润湿滞后性也随之增加。表面疏水性的增加减小了颗粒之间液桥的固液接触面积,使其更容易形成 "柱状 "或 "凸状 "液桥。此外,增强的润湿性滞后会导致固液接触边界在液桥拉伸过程中滞后,从而导致固液接触角减小。这些因素直接改变了静态拉伸过程中液桥的几何形状,从而影响了毛细力。同时,表面粗糙度的增加削弱了重力对液桥形态的影响,导致液桥断裂后,由于表面变得粗糙,残留在下部球面上的液体质量减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
期刊最新文献
Graphical abstract TOC Graphical abstract TOC Contents continued Editorial Board Graphical abstract TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1