Florian Put , Andrea Lucherini , Ruben Van Coile , Bart Merci
{"title":"CFD-based analysis of deviations between thermocouple measurements and local gas temperatures during the cooling phase of compartment fires","authors":"Florian Put , Andrea Lucherini , Ruben Van Coile , Bart Merci","doi":"10.1016/j.firesaf.2024.104276","DOIUrl":null,"url":null,"abstract":"<div><div>Data from thermocouple (TC) measurements play a pivotal role in fire safety science and engineering studies. It is well-known that there are deviations from the actual local gas temperature and many studies have led to the development of correction factors. The present study focuses on these deviations inside compartments through a systematic series of CFD simulations, performed with Fire Dynamics Simulator (FDS), version 6.8.0. A canonical cubic box is used as geometry. This allows for the demonstration of the impact of the presence of smoke, with variable optical thickness, on the TC data as retrieved from FDS. Significant differences are observed between TC measurements and local gas temperatures. Corrections as developed for TC measurements in open atmospheres cannot be readily applied in compartment configurations, where smoke properties change both spatially and temporally.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"150 ","pages":"Article 104276"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224001899","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Data from thermocouple (TC) measurements play a pivotal role in fire safety science and engineering studies. It is well-known that there are deviations from the actual local gas temperature and many studies have led to the development of correction factors. The present study focuses on these deviations inside compartments through a systematic series of CFD simulations, performed with Fire Dynamics Simulator (FDS), version 6.8.0. A canonical cubic box is used as geometry. This allows for the demonstration of the impact of the presence of smoke, with variable optical thickness, on the TC data as retrieved from FDS. Significant differences are observed between TC measurements and local gas temperatures. Corrections as developed for TC measurements in open atmospheres cannot be readily applied in compartment configurations, where smoke properties change both spatially and temporally.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.