Promotion of gentiopicroside production and transcriptional responses of biosynthetic genes in adventitious root cultures of Gentiana scabra Bunge by elicitation with methyl jasmonate
{"title":"Promotion of gentiopicroside production and transcriptional responses of biosynthetic genes in adventitious root cultures of Gentiana scabra Bunge by elicitation with methyl jasmonate","authors":"","doi":"10.1016/j.cpb.2024.100397","DOIUrl":null,"url":null,"abstract":"<div><div>Abiotic elicitors play a crucial role in regulating various aspects of plant growth, development, and specialized metabolism. This study aimed to further increase the gentiopicroside content by screening elicitor types, optimizing elicitation conditions, and estimating transcriptional responses of biosynthetic genes in the adventitious roots of <em>Gentiana scabra</em>. The results showed that methyl jasmonate (MeJA) was the most effective inducer for biomass accumulation in the adventitious roots of <em>G. scabra</em> among tested elicitors, with fresh weight (FW) and dry weight (DW) of 13.26 ± 0.57 g flask<sup>−1</sup> and 1.31 ± 0.25 g flask<sup>−1</sup>, respectively. The effects of the induction time and concentration of MeJA on the biomass and gentiopicroside content in the adventitious roots of <em>G. scabra</em> were investigated. The maximum FW (15.73 ± 0.41 g flask<sup>−1</sup>) and DW (1.51 ± 0.19 g flask<sup>−1</sup>) were obtained when the roots were cultured for 6 days in MS liquid medium containing 3.0 mg L<sup>−1</sup> 1-naphthlcetic acid (NAA) and 1.0 mg L<sup>−1</sup> kinetin (KT) at MeJA concentration of 100 μM L<sup>−1</sup>. Also, the gentiopicroside content significantly increased to 62.62 ± 0.27 mg g<sup>−1</sup> DW, and was 2.49 times higher than that for the nontreated control. The expression levels of 12 candidate gentiopicroside biosynthesis–related genes involved in the mevalonic acid (MVA), methyl erythritol phosphate (MEP), and secoiridoid pathways were estimated in the adventitious roots of <em>G. scabra</em> to further understand the transcriptional response to MeJA elicitation. Among these, 10 genes (<em>ACCT1</em>, <em>HMGR1</em>, <em>MCK1</em>, <em>MVD1</em>, <em>GPPS4</em>, <em>G10H</em>, <em>IS3</em>, <em>DL7H1</em>, <em>DXS5</em>, and <em>ISPH5</em>) were upregulated whereas <em>DXR1</em> and <em>IDI1</em> genes were downregulated in the adventitious roots of <em>G. scabra</em> compared with nontreated control, with significant differences having threshold <em>P</em> value ≤0.05. The transcriptional analyses revealed that 12 candidate genes were the key regulated genes in the gentiopicroside biosynthetic pathway. Overall, the findings provided a promising, feasible, and stable approach to utilizing MeJA elicitation to increase the production of valuable gentiopicroside. Additionally, they provided a foundation for future gentiopicroside biosynthesis through metabolic engineering strategies in the adventitious roots of <em>G. scabra</em>.</div></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abiotic elicitors play a crucial role in regulating various aspects of plant growth, development, and specialized metabolism. This study aimed to further increase the gentiopicroside content by screening elicitor types, optimizing elicitation conditions, and estimating transcriptional responses of biosynthetic genes in the adventitious roots of Gentiana scabra. The results showed that methyl jasmonate (MeJA) was the most effective inducer for biomass accumulation in the adventitious roots of G. scabra among tested elicitors, with fresh weight (FW) and dry weight (DW) of 13.26 ± 0.57 g flask−1 and 1.31 ± 0.25 g flask−1, respectively. The effects of the induction time and concentration of MeJA on the biomass and gentiopicroside content in the adventitious roots of G. scabra were investigated. The maximum FW (15.73 ± 0.41 g flask−1) and DW (1.51 ± 0.19 g flask−1) were obtained when the roots were cultured for 6 days in MS liquid medium containing 3.0 mg L−1 1-naphthlcetic acid (NAA) and 1.0 mg L−1 kinetin (KT) at MeJA concentration of 100 μM L−1. Also, the gentiopicroside content significantly increased to 62.62 ± 0.27 mg g−1 DW, and was 2.49 times higher than that for the nontreated control. The expression levels of 12 candidate gentiopicroside biosynthesis–related genes involved in the mevalonic acid (MVA), methyl erythritol phosphate (MEP), and secoiridoid pathways were estimated in the adventitious roots of G. scabra to further understand the transcriptional response to MeJA elicitation. Among these, 10 genes (ACCT1, HMGR1, MCK1, MVD1, GPPS4, G10H, IS3, DL7H1, DXS5, and ISPH5) were upregulated whereas DXR1 and IDI1 genes were downregulated in the adventitious roots of G. scabra compared with nontreated control, with significant differences having threshold P value ≤0.05. The transcriptional analyses revealed that 12 candidate genes were the key regulated genes in the gentiopicroside biosynthetic pathway. Overall, the findings provided a promising, feasible, and stable approach to utilizing MeJA elicitation to increase the production of valuable gentiopicroside. Additionally, they provided a foundation for future gentiopicroside biosynthesis through metabolic engineering strategies in the adventitious roots of G. scabra.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.