Yunxi Zhu , Yankai Zhang , Fengyi Fan , Wenyao Ma , Liwen Qin , Zheng Kuang , Ming Wu , Jun Yang
{"title":"An enhanced beamsteering algorithm based on MVDR for a multi-channel parametric array loudspeaker array","authors":"Yunxi Zhu , Yankai Zhang , Fengyi Fan , Wenyao Ma , Liwen Qin , Zheng Kuang , Ming Wu , Jun Yang","doi":"10.1016/j.jsv.2024.118768","DOIUrl":null,"url":null,"abstract":"<div><div>A multi-channel parametric array loudspeaker (PAL) array can steer an audio beam using a digital signal processing technique. However, it faces the challenge posed by grating lobes in the ultrasonic radiation pattern, which leads to unwanted sidelobes in the steering audio beam when the Nyquist criterion is not satisfied due to short ultrasonic wavelengths. As a result, the audio beam not only fails to steer in the desired direction but also loses its inherent advantage of high directivity when using a beamsteer with a delay-and-sum (DAS) structure. This work proposes an enhanced beamsteering algorithm to suppress the sidelobes by optimizing the channel weight coefficients. The nonlinear optimization problem is transformed into a linear expression, making the minimum-variance-distortionless-response (MVDR) algorithm applicable. Both simulations and experiments validate the effective suppression of sidelobes and the mitigation of sound fuzziness within the range from the sidelobe to the mainlobe. The audio beam successfully steers in the desired direction and maintains a high directivity. However, the performance of the algorithm deteriorates at high audio frequencies due to the inherent physical limitations of wave interference in sound field control strategies.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118768"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005303","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-channel parametric array loudspeaker (PAL) array can steer an audio beam using a digital signal processing technique. However, it faces the challenge posed by grating lobes in the ultrasonic radiation pattern, which leads to unwanted sidelobes in the steering audio beam when the Nyquist criterion is not satisfied due to short ultrasonic wavelengths. As a result, the audio beam not only fails to steer in the desired direction but also loses its inherent advantage of high directivity when using a beamsteer with a delay-and-sum (DAS) structure. This work proposes an enhanced beamsteering algorithm to suppress the sidelobes by optimizing the channel weight coefficients. The nonlinear optimization problem is transformed into a linear expression, making the minimum-variance-distortionless-response (MVDR) algorithm applicable. Both simulations and experiments validate the effective suppression of sidelobes and the mitigation of sound fuzziness within the range from the sidelobe to the mainlobe. The audio beam successfully steers in the desired direction and maintains a high directivity. However, the performance of the algorithm deteriorates at high audio frequencies due to the inherent physical limitations of wave interference in sound field control strategies.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.