{"title":"Direct synthesis of low-silica ZSM-48 zeolite via seed-assisted hydrothermal synthesis with 1,6-hexanediamine as template","authors":"Shiao Gao , Ahui Ma , Zhennan Yang, Sida Ge, Zhuwen Zhang, Zhijie Wu","doi":"10.1016/j.micromeso.2024.113369","DOIUrl":null,"url":null,"abstract":"<div><div>ZSM-48 zeolite is characteristic of 10-member ring (10-MR) one-dimensional tubular channel structure and finds extensive applications in catalytic hydroisomerization reactions. Here we developed an efficient synthetic strategy for low-silica ZSM-48 zeolite with a SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio at 30–176 via a seed-assisted hydrothermal synthesis method, overcoming the limit that 1,6-hexanediamine (HDA) template can only be used to synthesize high-silica (i.e., SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio >200) zeolites. A two-step crystallization procedure coupled with zeolite seed-assisted synthesis strategy was enrolled to realize well crystallized ZSM-48 zeolites, in which the zeolite nuclei are sufficiently produced at the nucleation temperature at 100 °C for 24 h with the aid of zeolite seeds, and the zeolite growth is proceeded at the crystallization temperature at 160 °C for 48 h. The morphology and particle size of low-silica ZSM-48 zeolite have been manipulated by adjusting the synthetic parameters, such as the alkalinity and silicon source of aluminosilicate gel for zeolite, the crystallization manner (static or dynamic crystallization), as well as the presence of additive (i.e., sodium chloride). The as-synthesized ZSM-48 zeolite possesses a high acid content of 0.194 mmol/g, highlighting its potential as an excellent acidic support for hydroisomerization catalysts. The cost-effective and environmentally friendly synthesis strategy, which is anticipated to expand the application of alkylamine organic templates in the synthesis of low-silica ZSM-48 zeolite.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"382 ","pages":"Article 113369"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003913","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
ZSM-48 zeolite is characteristic of 10-member ring (10-MR) one-dimensional tubular channel structure and finds extensive applications in catalytic hydroisomerization reactions. Here we developed an efficient synthetic strategy for low-silica ZSM-48 zeolite with a SiO2/Al2O3 ratio at 30–176 via a seed-assisted hydrothermal synthesis method, overcoming the limit that 1,6-hexanediamine (HDA) template can only be used to synthesize high-silica (i.e., SiO2/Al2O3 ratio >200) zeolites. A two-step crystallization procedure coupled with zeolite seed-assisted synthesis strategy was enrolled to realize well crystallized ZSM-48 zeolites, in which the zeolite nuclei are sufficiently produced at the nucleation temperature at 100 °C for 24 h with the aid of zeolite seeds, and the zeolite growth is proceeded at the crystallization temperature at 160 °C for 48 h. The morphology and particle size of low-silica ZSM-48 zeolite have been manipulated by adjusting the synthetic parameters, such as the alkalinity and silicon source of aluminosilicate gel for zeolite, the crystallization manner (static or dynamic crystallization), as well as the presence of additive (i.e., sodium chloride). The as-synthesized ZSM-48 zeolite possesses a high acid content of 0.194 mmol/g, highlighting its potential as an excellent acidic support for hydroisomerization catalysts. The cost-effective and environmentally friendly synthesis strategy, which is anticipated to expand the application of alkylamine organic templates in the synthesis of low-silica ZSM-48 zeolite.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.