Effective remediation of toxic metal ions (Cd(II), Pb(II), Hg(II), and Ba(II)) using mesoporous glauconite-based iron silicate nanorods: Experimental and theoretical studies
Aya Fadl Allah , Mohamed Shaban , Haifa A. Alqhtani , May Bin-Jumah , Noof A. Alenazi , Ahmed A. Allam , Mostafa R. Abukhadra
{"title":"Effective remediation of toxic metal ions (Cd(II), Pb(II), Hg(II), and Ba(II)) using mesoporous glauconite-based iron silicate nanorods: Experimental and theoretical studies","authors":"Aya Fadl Allah , Mohamed Shaban , Haifa A. Alqhtani , May Bin-Jumah , Noof A. Alenazi , Ahmed A. Allam , Mostafa R. Abukhadra","doi":"10.1016/j.micromeso.2024.113390","DOIUrl":null,"url":null,"abstract":"<div><div>Glauconite minerals underwent an advanced exfoliation and scrolling process, yielding novel iron silicate nanorods (GRs) with increased surface area, reactivity, and improved physicochemical properties. These structures were introduced as superior adsorbents for the highly efficient adsorption of various toxic metal ions, such as Cd(II), Pb(II), Hg(II), and Ba(II). The GRs exhibited maximum adsorption capacities of 283 mg/g for Cd(II), 247 mg/g for Pb(II), 132.3 mg/g for Hg(II), and 165.2 mg/g for Ba(II). The adsorption properties of the GRs during the adsorption of these four metal ions were elucidated through traditional (Langmuir model) and advanced (monolayer model of single energy site) isotherm analyses. Advanced isotherm modeling revealed that the GR surface was saturated with numerous effective adsorption sites, with densities of 125 mg/g for Cd(II), 68.8 mg/g for Pb(II), 40.9 mg/g for Hg(II), and 57.9 mg/g for Ba(II). Moreover, each site could accommodate approximately four ions of the studied metals, which are vertically oriented and participate in multi-ionic adsorption reactions. Energetic analyses, whether based on classical models (Gaussian energy <8 kJ/mol) or advanced models (adsorption energy <40 kJ/mol), indicated that the adsorption processes are governed by physical mechanisms, including electrostatic attractions, van der Waals forces, and hydrogen bonding. Furthermore, thermodynamic assessments confirmed that the adsorption of these ions occurs through exothermic and spontaneous reactions.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"382 ","pages":"Article 113390"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124004128","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Glauconite minerals underwent an advanced exfoliation and scrolling process, yielding novel iron silicate nanorods (GRs) with increased surface area, reactivity, and improved physicochemical properties. These structures were introduced as superior adsorbents for the highly efficient adsorption of various toxic metal ions, such as Cd(II), Pb(II), Hg(II), and Ba(II). The GRs exhibited maximum adsorption capacities of 283 mg/g for Cd(II), 247 mg/g for Pb(II), 132.3 mg/g for Hg(II), and 165.2 mg/g for Ba(II). The adsorption properties of the GRs during the adsorption of these four metal ions were elucidated through traditional (Langmuir model) and advanced (monolayer model of single energy site) isotherm analyses. Advanced isotherm modeling revealed that the GR surface was saturated with numerous effective adsorption sites, with densities of 125 mg/g for Cd(II), 68.8 mg/g for Pb(II), 40.9 mg/g for Hg(II), and 57.9 mg/g for Ba(II). Moreover, each site could accommodate approximately four ions of the studied metals, which are vertically oriented and participate in multi-ionic adsorption reactions. Energetic analyses, whether based on classical models (Gaussian energy <8 kJ/mol) or advanced models (adsorption energy <40 kJ/mol), indicated that the adsorption processes are governed by physical mechanisms, including electrostatic attractions, van der Waals forces, and hydrogen bonding. Furthermore, thermodynamic assessments confirmed that the adsorption of these ions occurs through exothermic and spontaneous reactions.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.