Ruiqi Guo , Jie Dong , Linjian Ma , Zhilin Long , Fu Xu , Changjun Yin
{"title":"Three-dimensional mesoscopic investigation on the dynamic compressive behavior of coral sand concrete with reinforced granite coarse aggregate (GCA)","authors":"Ruiqi Guo , Jie Dong , Linjian Ma , Zhilin Long , Fu Xu , Changjun Yin","doi":"10.1016/j.compstruct.2024.118650","DOIUrl":null,"url":null,"abstract":"<div><div>In the construction of island and reef engineering, coral concrete shows a good application prospect due to its abundant raw materials. However, the porous and fragile mechanical characteristics of coral reefs limit their use as coarse aggregate in the preparation of coral concrete materials. This study utilized hard and dense granite as the coarse aggregate and regarded coral sand concrete as a two-phase composite material consisting of spherical granite coarse aggregate (GCA) and coral mortar. It investigated the enhancement effect of granite on coral concrete from a microscopic perspective. Five 3D mesoscopic models with different GCA contents and randomly distributed aggregates were established to reveal the variation patterns and failure mechanisms of coral sand concrete under impact loading with GCA. The findings demonstrate that the K&C model can effectively simulate the dynamic compression behavior of coral mortar and granite materials. Under the action of a half-sine incident wave, the dynamic compressive strength of the samples increases with the increase in GCA, demonstrating that the addition of GCA can effectively enhance the impact resistance of coral sand concrete. As the content of GCA increases, the sensitivity of the samples to the loading wave amplitude also increases accordingly.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118650"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007785","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In the construction of island and reef engineering, coral concrete shows a good application prospect due to its abundant raw materials. However, the porous and fragile mechanical characteristics of coral reefs limit their use as coarse aggregate in the preparation of coral concrete materials. This study utilized hard and dense granite as the coarse aggregate and regarded coral sand concrete as a two-phase composite material consisting of spherical granite coarse aggregate (GCA) and coral mortar. It investigated the enhancement effect of granite on coral concrete from a microscopic perspective. Five 3D mesoscopic models with different GCA contents and randomly distributed aggregates were established to reveal the variation patterns and failure mechanisms of coral sand concrete under impact loading with GCA. The findings demonstrate that the K&C model can effectively simulate the dynamic compression behavior of coral mortar and granite materials. Under the action of a half-sine incident wave, the dynamic compressive strength of the samples increases with the increase in GCA, demonstrating that the addition of GCA can effectively enhance the impact resistance of coral sand concrete. As the content of GCA increases, the sensitivity of the samples to the loading wave amplitude also increases accordingly.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.