Hualan Luo , Shenqi Wei , Pingxing Xing , Yuanyuan Wang , Liyi Dai
{"title":"Ni-CoS2 nanoparticles loaded on 3D RGO for efficient electrochemical hydrogen and oxygen evolution reaction","authors":"Hualan Luo , Shenqi Wei , Pingxing Xing , Yuanyuan Wang , Liyi Dai","doi":"10.1016/j.jelechem.2024.118713","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient non-precious metal electrocatalysts for electrochemical water splitting is still a huge challenge. In this study, we designed and synthesized an efficient electrocatalyst for Ni-doped cobalt sulfide supported on 3D RGO (Ni-CoS<sub>2</sub>/3D RGO) using a simple one-step solvent-thermal method. Ni doping adjusted the charge distribution on the surface of the material, significantly improved the catalytic activity, and then accelerated the reaction kinetics. The high specific surface area and high stability of 3D RGO greatly improved the intrinsic activity of the material, making Ni-CoS<sub>2</sub>/3D RGO exhibit superior catalytic activity in both electrochemical hydrogen evolution and oxygen evolution. We evaluated the morphology and properties of the catalysts through a series of characterization methods and electrochemical performance tests. When the current density is 10 mA cm<sup>−2</sup>, the HER overpotential of Ni-CoS<sub>2</sub>/3D RGO under acidic condition reaches 138 mV, and the Tafel slope is 61 mV dec<sup>−1</sup>. Under alkaline conditions, the OER overpotential reaches 286 mV, and the Tafel slope is only 48 mV dec<sup>−1</sup>. And the OWS overpotential of the catalyst is 1.41 V and 1.82 V under acidic and alkaline conditions, respectively, indicating that the catalyst has ideal water splitting performance. This work provides a new idea for the application of 3D reduced graphene oxide in electrochemical direction, and also provides a new strategy for the design and preparation of non-precious metal catalysts for the efficient electrochemical water splitting.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"974 ","pages":"Article 118713"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157266572400691X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient non-precious metal electrocatalysts for electrochemical water splitting is still a huge challenge. In this study, we designed and synthesized an efficient electrocatalyst for Ni-doped cobalt sulfide supported on 3D RGO (Ni-CoS2/3D RGO) using a simple one-step solvent-thermal method. Ni doping adjusted the charge distribution on the surface of the material, significantly improved the catalytic activity, and then accelerated the reaction kinetics. The high specific surface area and high stability of 3D RGO greatly improved the intrinsic activity of the material, making Ni-CoS2/3D RGO exhibit superior catalytic activity in both electrochemical hydrogen evolution and oxygen evolution. We evaluated the morphology and properties of the catalysts through a series of characterization methods and electrochemical performance tests. When the current density is 10 mA cm−2, the HER overpotential of Ni-CoS2/3D RGO under acidic condition reaches 138 mV, and the Tafel slope is 61 mV dec−1. Under alkaline conditions, the OER overpotential reaches 286 mV, and the Tafel slope is only 48 mV dec−1. And the OWS overpotential of the catalyst is 1.41 V and 1.82 V under acidic and alkaline conditions, respectively, indicating that the catalyst has ideal water splitting performance. This work provides a new idea for the application of 3D reduced graphene oxide in electrochemical direction, and also provides a new strategy for the design and preparation of non-precious metal catalysts for the efficient electrochemical water splitting.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.