Siya Ram , Roshan Lal Gautam , Shweta Singh , Devendra Singh , Ram Naraian , Nahida Arif
{"title":"Prevalence of multidrug-resistant enteropathogenic Escherichia coli (EPEC) in river Gomti at Jaunpur city","authors":"Siya Ram , Roshan Lal Gautam , Shweta Singh , Devendra Singh , Ram Naraian , Nahida Arif","doi":"10.1016/j.clwat.2024.100048","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigated the microbial EPEC load exhibiting three distinct marker genes: <em>eaeA</em>, <em>bfp,</em> and <em>stx1</em> in the river Gomati water across Jaunpur City, India. In order to determine the prevalence of EPEC virulent strains that are multidrug-resistant, eight different public gathering sites on the river were selected from upstream to downstream flow. The highest population of total coliform (5400×10<sup>3</sup>) and fecal coliforms (3500×10<sup>7</sup>) were subsequently recorded from site #5 (Gopi ghat). A total of 46 EPEC strains were virulent, exhibiting <em>eaeA</em> and <em>bfp</em> genes, while none of them harbored the <em>stx1</em> gene. All 46 strains contained the <em>eaeA</em> gene (100 %); however, only 11 isolates, as 24.10 %, exhibited <em>bfp</em> virulent genes. Most of the EPEC isolates from all seasons were resistant to more than three different classes of variable drugs and confirmed multidrug resistance. The highest 95.7 % of total isolates (44) exhibited resistance against tetracycline, while the lowest four isolates (8.6 %) against ciprofloxacin. Furthermore, it was evident that the bacterial population load and a load of virulent genes were found to be higher in the samples of the city's significant sites. This confirms the large-scale fecal contamination of water either through nearby animals or anthropogenic activities, which are needed to make proper management.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"2 ","pages":"Article 100048"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263224000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present study investigated the microbial EPEC load exhibiting three distinct marker genes: eaeA, bfp, and stx1 in the river Gomati water across Jaunpur City, India. In order to determine the prevalence of EPEC virulent strains that are multidrug-resistant, eight different public gathering sites on the river were selected from upstream to downstream flow. The highest population of total coliform (5400×103) and fecal coliforms (3500×107) were subsequently recorded from site #5 (Gopi ghat). A total of 46 EPEC strains were virulent, exhibiting eaeA and bfp genes, while none of them harbored the stx1 gene. All 46 strains contained the eaeA gene (100 %); however, only 11 isolates, as 24.10 %, exhibited bfp virulent genes. Most of the EPEC isolates from all seasons were resistant to more than three different classes of variable drugs and confirmed multidrug resistance. The highest 95.7 % of total isolates (44) exhibited resistance against tetracycline, while the lowest four isolates (8.6 %) against ciprofloxacin. Furthermore, it was evident that the bacterial population load and a load of virulent genes were found to be higher in the samples of the city's significant sites. This confirms the large-scale fecal contamination of water either through nearby animals or anthropogenic activities, which are needed to make proper management.