Hanyu Ren , Kai Tan , Geyu Zhang , Zhipeng Wang , Haijing Shi , Zhongming Wen , Yangyang Liu
{"title":"Diverse responses of the changes in evapotranspiration and water yield to vegetation and climate change in the Yanhe River watershed","authors":"Hanyu Ren , Kai Tan , Geyu Zhang , Zhipeng Wang , Haijing Shi , Zhongming Wen , Yangyang Liu","doi":"10.1016/j.ecolind.2024.112750","DOIUrl":null,"url":null,"abstract":"<div><div>Quantifying the contribution and modes of action of climate variation and vegetation greening to evapotranspiration (ET) and water yield (WY) in the growing season of the Yanhe River Watershed (YHRW) is of great significance for scientifically managing the ecosystem in water-scarce areas. This study simulated the ET of YHRW based on the Eagleson model and analyzed the contribution, direct and indirect effects of climate variables (including precipitation (Pre), temperature (Tem), radiation (RN), relative humidity (RH), wind speed (Wind)) and vegetation on the ET and WY changes during three time periods of YHRW. The results suggested the ET in the YHRW mainly showed a downward trend from 1982 to 1999, and it turned into an increasing trend after 1999. From 1982 to 2018, ET showed an overall upward trend (2.02 mm·year<sup>−1</sup>), while WY in three different study periods mainly showed a decreasing trend. Spatially, RN, Tem, and Wind were the drivers controlling ET and WY changes from 1982 to 1999. After 1999, LAI was the main controller in ET changes, while climate factors were the main contributors to WY changes. During the 1982–2018 research period, vegetation had the greatest impact on regional ET changes, while Pre dominated the WY changes. The effects of climate variation and vegetation greening on ET and WY are complex and non-independent. Tem and RH are key mediations of ET variation, while Tem and RH are key mediating factors in WY variation. We emphasize the spatial heterogeneity in water budget changes during the vegetation growth period of YHRW at different time periods, especially after large-scale vegetation greening. This finding should be considered in the planning of sustainable development in water-scarce areas in the future to make the local eco-hydrological effect the best.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"168 ","pages":"Article 112750"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X2401207X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying the contribution and modes of action of climate variation and vegetation greening to evapotranspiration (ET) and water yield (WY) in the growing season of the Yanhe River Watershed (YHRW) is of great significance for scientifically managing the ecosystem in water-scarce areas. This study simulated the ET of YHRW based on the Eagleson model and analyzed the contribution, direct and indirect effects of climate variables (including precipitation (Pre), temperature (Tem), radiation (RN), relative humidity (RH), wind speed (Wind)) and vegetation on the ET and WY changes during three time periods of YHRW. The results suggested the ET in the YHRW mainly showed a downward trend from 1982 to 1999, and it turned into an increasing trend after 1999. From 1982 to 2018, ET showed an overall upward trend (2.02 mm·year−1), while WY in three different study periods mainly showed a decreasing trend. Spatially, RN, Tem, and Wind were the drivers controlling ET and WY changes from 1982 to 1999. After 1999, LAI was the main controller in ET changes, while climate factors were the main contributors to WY changes. During the 1982–2018 research period, vegetation had the greatest impact on regional ET changes, while Pre dominated the WY changes. The effects of climate variation and vegetation greening on ET and WY are complex and non-independent. Tem and RH are key mediations of ET variation, while Tem and RH are key mediating factors in WY variation. We emphasize the spatial heterogeneity in water budget changes during the vegetation growth period of YHRW at different time periods, especially after large-scale vegetation greening. This finding should be considered in the planning of sustainable development in water-scarce areas in the future to make the local eco-hydrological effect the best.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.