Pore-based prediction of crack initiation life in very-high-cycle fatigue

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2024-10-18 DOI:10.1016/j.ijfatigue.2024.108655
Ningyu Zhang, Wenqi Liu, Tao Shi, Jingyu Sun, Guian Qian
{"title":"Pore-based prediction of crack initiation life in very-high-cycle fatigue","authors":"Ningyu Zhang,&nbsp;Wenqi Liu,&nbsp;Tao Shi,&nbsp;Jingyu Sun,&nbsp;Guian Qian","doi":"10.1016/j.ijfatigue.2024.108655","DOIUrl":null,"url":null,"abstract":"<div><div>The porosity of the material produced by additive manufacturing technology gives rise to a notable dispersion of the crack initiation life in the very-high-cycle fatigue regime. The crack initiation life in the very high cycle fatigue regime can be divided into the initial crack initiation life and early microcrack growth life. This paper proposed a model considering the effect of pore morphology and location to predict the initial crack initiation life. The average local stress in a grain near the pore is modified by considering the relationship between pore roundness, inclination, position, and stress concentration factor. The growth life of early microcrack is determined by integrating empirical formulas based on dislocation theory. Subsequently, the probability distribution of crack initiation life is obtained, which is in good agreement with the experimental results. The competition factor is proposed to quantitatively evaluate the tendency of crack initiation from the surface or the interior, taking into account the influence of local average stress and grain size. The predicted load corresponding to the shift in crack initiation position is in accordance with the experimental results.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108655"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005140","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The porosity of the material produced by additive manufacturing technology gives rise to a notable dispersion of the crack initiation life in the very-high-cycle fatigue regime. The crack initiation life in the very high cycle fatigue regime can be divided into the initial crack initiation life and early microcrack growth life. This paper proposed a model considering the effect of pore morphology and location to predict the initial crack initiation life. The average local stress in a grain near the pore is modified by considering the relationship between pore roundness, inclination, position, and stress concentration factor. The growth life of early microcrack is determined by integrating empirical formulas based on dislocation theory. Subsequently, the probability distribution of crack initiation life is obtained, which is in good agreement with the experimental results. The competition factor is proposed to quantitatively evaluate the tendency of crack initiation from the surface or the interior, taking into account the influence of local average stress and grain size. The predicted load corresponding to the shift in crack initiation position is in accordance with the experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于孔隙的超高循环疲劳裂纹起始寿命预测
增材制造技术生产的材料的多孔性导致超高循环疲劳状态下的裂纹起始寿命明显分散。超高循环疲劳状态下的裂纹起始寿命可分为初始裂纹起始寿命和早期微裂纹生长寿命。本文提出了一个考虑到孔隙形态和位置影响的模型来预测初始裂纹起始寿命。通过考虑孔隙圆度、倾斜度、位置和应力集中因子之间的关系,修正了孔隙附近晶粒的平均局部应力。早期微裂纹的生长寿命是通过整合基于位错理论的经验公式确定的。随后,得到了裂纹起始寿命的概率分布,这与实验结果十分吻合。考虑到局部平均应力和晶粒尺寸的影响,提出了竞争因子来定量评估裂纹从表面或内部萌生的趋势。与裂纹起始位置移动相对应的预测载荷与实验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
Corrosion fatigue behavior of cast iron in simulated combustion product solutions of ammonia and methanol fuels A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes Effect of three-stage heat treatment on the composite waveform and variable amplitude fatigue properties of TC4 titanium alloy pulsed laser-arc hybrid welded joints A strain-interfaced digital twin solution for corner fatigue crack growth using Bayesian inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1