3D printed CuZnAl2O3-based catalysts for direct CO2 hydrogenation to DME, optimization and scale up

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-10-26 DOI:10.1016/j.mseb.2024.117759
Yoran De Vos , Arie J.J. Koekkoek , Giuseppe Bonura , Serena Todaro , Monika Kus , Alexander Vansant , Gijsbert Gerritsen , Catia Cannilla , Hendrikus C.L. Abbenhuis , Vesna Middelkoop
{"title":"3D printed CuZnAl2O3-based catalysts for direct CO2 hydrogenation to DME, optimization and scale up","authors":"Yoran De Vos ,&nbsp;Arie J.J. Koekkoek ,&nbsp;Giuseppe Bonura ,&nbsp;Serena Todaro ,&nbsp;Monika Kus ,&nbsp;Alexander Vansant ,&nbsp;Gijsbert Gerritsen ,&nbsp;Catia Cannilla ,&nbsp;Hendrikus C.L. Abbenhuis ,&nbsp;Vesna Middelkoop","doi":"10.1016/j.mseb.2024.117759","DOIUrl":null,"url":null,"abstract":"<div><div>This work reports the development, optimization and subsequent scale-up of 3D printed catalyst structures for direct CO<sub>2</sub> hydrogenation to DME. To ensure compatibility between the used Cu-ZnO-Al<sub>2</sub>O<sub>3</sub> <!-->(CZA) catalyst and the acid form H-ZSM-5 co-catalyst, a new binary polymeric binder system, based on polyethyleneimine (PEI) and methylcellulose (MC), was selected. The 3D-printing paste composition was optimized through 2 successive Design of Experiments (DOE) to achieve (i) good textural properties that ensure catalytic activity and (ii) improved mechanical integrity and printability. The DOE unveiled the critical link between the pH of the printing paste and the<!--> <!-->preservation of<!--> <!-->textural properties and<!--> <!-->catalytical activity<!--> <!-->of the<!--> <!-->printed catalysts. Finally, the successful scale-up of the 3D-printed catalyst structures was demonstrated using the optimized printing paste, and the performance of the final catalysts was evaluated by catalytic testing and<!--> <!-->accompanied X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analyses.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117759"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005889","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports the development, optimization and subsequent scale-up of 3D printed catalyst structures for direct CO2 hydrogenation to DME. To ensure compatibility between the used Cu-ZnO-Al2O3 (CZA) catalyst and the acid form H-ZSM-5 co-catalyst, a new binary polymeric binder system, based on polyethyleneimine (PEI) and methylcellulose (MC), was selected. The 3D-printing paste composition was optimized through 2 successive Design of Experiments (DOE) to achieve (i) good textural properties that ensure catalytic activity and (ii) improved mechanical integrity and printability. The DOE unveiled the critical link between the pH of the printing paste and the preservation of textural properties and catalytical activity of the printed catalysts. Finally, the successful scale-up of the 3D-printed catalyst structures was demonstrated using the optimized printing paste, and the performance of the final catalysts was evaluated by catalytic testing and accompanied X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analyses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CuZnAl2O3 的 3D 打印催化剂用于二氧化碳直接加氢制二甲醚、优化和放大
这项研究报告了用于二氧化碳直接加氢制二甲醚的三维打印催化剂结构的开发、优化和后续放大。为确保所使用的 Cu-ZnO-Al2O3 (CZA) 催化剂与酸性 H-ZSM-5 助催化剂之间的兼容性,选择了一种基于聚乙烯亚胺 (PEI) 和甲基纤维素 (MC) 的新型二元聚合物粘合剂体系。通过两次连续的实验设计(DOE)对 3D 打印浆料成分进行了优化,以实现(i)确保催化活性的良好质地特性和(ii)改善的机械完整性和可打印性。设计实验揭示了印刷浆料的 pH 值与保持印刷催化剂的质地特性和催化活性之间的关键联系。最后,使用优化的打印浆料成功地放大了三维打印催化剂结构,并通过催化测试和伴随的 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和能量色散光谱 (EDS) 分析评估了最终催化剂的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Biocompatible Mn and Cu dual-doped ZnS nanosheets for enhanced the photocatalytic activity under sunlight irradiation for wastewater treatment and embedded with PVA polymer for reusability Study on the mechanism of photocatalytic activity enhancement of Ag/Ag3PO4/PDI-2 supramolecular Z-scheme heterojunction photocatalyst A comparative study on the lamella effect and properties of atomized iron powder and reduced iron powder in Fe-based soft magnetic composites Effect of temperature and capillary number on wettability and contact angle hysteresis of various materials. Modeling taking into account porosity Synthesis and enhanced electrical properties of Ag-doped α-Fe2O3 nanoparticles in PVA films for nanoelectronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1