{"title":"Fe-HNT@PVP/PEI membranes for enhanced dye removal and water purification","authors":"Shanthi Kannivelan, Kalaivizhi Rajappan","doi":"10.1016/j.mseb.2025.118213","DOIUrl":null,"url":null,"abstract":"<div><div>This study envisages the improvement in adsorption efficiency of polyetherimide (PEI) membranes by integrating Fe-doped halloysite nanotubes (Fe-HNTs) into polyvinylpyrrolidone (PVP)-modified PEI matrices for reducing water contamination caused by dyes, which are known for their harmful impact on aquatic life. Fe-HNTs were synthesized via the Co-precipitation method and incorporated into PEI/PVP membranes at 1 % and 2 % concentrations by utilizing a simple, non-destructive phase inversion technique. The modification of the PEI matrix by PVP/Fe-HNTs brought significant structural alterations, improved hydrophilicity, and morphological changes in the membranes. These changes were witnessed through techniques including Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The 2 %-Fe-HNTs@PVP/PEI membrane demonstrated superior adsorption capacity for methylene blue (MB) dye, with significantly enhanced removal efficiency compared to the unmodified PVP/PEI membrane. Kinetic studies revealed a fast adsorption rate, fitting with pseudo-first-order and Langmuir isotherm models. The membrane also exhibited excellent reusability, maintaining its efficacy over multiple cycles. In textile effluent treatment trials, the modified membrane achieved an impressive 85 % removal of dye pollutants within 300 min, underscoring its appropriateness for environmental remediation and purification of water.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"317 ","pages":"Article 118213"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725002363","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study envisages the improvement in adsorption efficiency of polyetherimide (PEI) membranes by integrating Fe-doped halloysite nanotubes (Fe-HNTs) into polyvinylpyrrolidone (PVP)-modified PEI matrices for reducing water contamination caused by dyes, which are known for their harmful impact on aquatic life. Fe-HNTs were synthesized via the Co-precipitation method and incorporated into PEI/PVP membranes at 1 % and 2 % concentrations by utilizing a simple, non-destructive phase inversion technique. The modification of the PEI matrix by PVP/Fe-HNTs brought significant structural alterations, improved hydrophilicity, and morphological changes in the membranes. These changes were witnessed through techniques including Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The 2 %-Fe-HNTs@PVP/PEI membrane demonstrated superior adsorption capacity for methylene blue (MB) dye, with significantly enhanced removal efficiency compared to the unmodified PVP/PEI membrane. Kinetic studies revealed a fast adsorption rate, fitting with pseudo-first-order and Langmuir isotherm models. The membrane also exhibited excellent reusability, maintaining its efficacy over multiple cycles. In textile effluent treatment trials, the modified membrane achieved an impressive 85 % removal of dye pollutants within 300 min, underscoring its appropriateness for environmental remediation and purification of water.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.