Design and performance analysis of integrated sensing and communication scheme based on LoRa signals

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Aeu-International Journal of Electronics and Communications Pub Date : 2024-10-22 DOI:10.1016/j.aeue.2024.155559
Qiongdan Huang, Mengyang Zhao, Liang Li, Jiejing Han, Lulu Liu
{"title":"Design and performance analysis of integrated sensing and communication scheme based on LoRa signals","authors":"Qiongdan Huang,&nbsp;Mengyang Zhao,&nbsp;Liang Li,&nbsp;Jiejing Han,&nbsp;Lulu Liu","doi":"10.1016/j.aeue.2024.155559","DOIUrl":null,"url":null,"abstract":"<div><div>LoRa (Long Range) has garnered widespread adoption in Internet of Things (IoT) communications due to its extensive transmission range and robust resistance to interference. Furthermore, its capability to linearly discern deviations across both frequency and time domains renders it an ideal signal for sensing applications. Consequently, this article proposes an Integrated Sensing and Communication (ISAC) scheme based on the LoRa signal. On the communication side, while the modulation and demodulation processes of the LoRa signal are currently kept confidential, this article has theoretically derived its principles and further implemented the communication functionality of LoRa through experimental simulations. On the sensing side, through theoretical derivation and experimental simulation, the influence of different modulation information on the peak amplitude and position of pulse compression was analyzed. Two signal processing schemes are proposed to overcome the impact of modulation information, thereby enabling the sensing function. The communication and sensing performance of the proposed ISAC scheme was evaluated. Experimental results demonstrated that, even in low signal-to-noise ratio (SNR) environments, the communication function maintained a low bit error rate (BER), while the sensing function achieved a high target detection rate, both of which exhibited excellent performance.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155559"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S143484112400445X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

LoRa (Long Range) has garnered widespread adoption in Internet of Things (IoT) communications due to its extensive transmission range and robust resistance to interference. Furthermore, its capability to linearly discern deviations across both frequency and time domains renders it an ideal signal for sensing applications. Consequently, this article proposes an Integrated Sensing and Communication (ISAC) scheme based on the LoRa signal. On the communication side, while the modulation and demodulation processes of the LoRa signal are currently kept confidential, this article has theoretically derived its principles and further implemented the communication functionality of LoRa through experimental simulations. On the sensing side, through theoretical derivation and experimental simulation, the influence of different modulation information on the peak amplitude and position of pulse compression was analyzed. Two signal processing schemes are proposed to overcome the impact of modulation information, thereby enabling the sensing function. The communication and sensing performance of the proposed ISAC scheme was evaluated. Experimental results demonstrated that, even in low signal-to-noise ratio (SNR) environments, the communication function maintained a low bit error rate (BER), while the sensing function achieved a high target detection rate, both of which exhibited excellent performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 LoRa 信号的综合传感与通信方案的设计与性能分析
LoRa(长距离)因其广泛的传输范围和强大的抗干扰能力,在物联网(IoT)通信中得到了广泛应用。此外,LoRa 还能线性地辨别频域和时域的偏差,是传感应用的理想信号。因此,本文提出了一种基于 LoRa 信号的集成传感与通信(ISAC)方案。在通信方面,虽然 LoRa 信号的调制和解调过程目前处于保密状态,但本文从理论上推导出了其原理,并通过实验模拟进一步实现了 LoRa 的通信功能。在传感方面,通过理论推导和实验仿真,分析了不同调制信息对脉冲压缩峰值幅度和位置的影响。提出了两种信号处理方案来克服调制信息的影响,从而实现传感功能。对所提出的 ISAC 方案的通信和传感性能进行了评估。实验结果表明,即使在信噪比(SNR)较低的环境中,通信功能也能保持较低的误码率(BER),而传感功能则实现了较高的目标检测率,两者均表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
期刊最新文献
Design of band reconfigurable Koch fractal antenna for wideband applications Simultaneous multi-person vital signs monitoring using multiple-input multiple-output FMCW millimeter wave radar Hybrid-coupler-based quasi-reflectionless balanced bandpass filter with all common mode suppression Isolation improvement in MIMO antenna with a simple hybrid technique of orthogonal and inverse currents FPGA implementation of an optimized neural network for CFD acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1