{"title":"Multidimensional woodchips-like Mn-metal-organic framework for asymmetric supercapacitor devices","authors":"","doi":"10.1016/j.apsadv.2024.100650","DOIUrl":null,"url":null,"abstract":"<div><div>Multidimensional manganese-metal organic frameworks (Mn-MOF) are synthesized using 1,2,4,5-Benzene tetracarboxylic acid (BTTC) at various temperatures (100–160 °C). The Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques successfully confirm the formation of Mn-MOF. Among the various temperatures, the Mn-MOF synthesized at 140 °C (Mn-MOF@BTTC-140) is remarkable because it has excellent crystallinity and a unique morphology, i.e., woodchips-like structure. The synthesized Mn-MOF@BTTC materials are used in supercapacitor applications. In comparison to all materials, Mn-MOF@BTTC-140 revealed the maximum specific capacitance (Cs) of 627 F g<sup>-1</sup> @ 1 A g<sup>-1</sup>, and it displayed 91 % capacitance retention even after the 6000 cycles at a current density of 10 A g<sup>-1</sup>. Furthermore, the supercapacitor device (SD) constructed using carbon nanofibers (CNF) as the negative electrode and Mn-MOF@BTTC-140 as the positive electrode delivered an energy density of 25 W h kg<sup>-1</sup> at a power density of 532 W kg<sup>-1</sup>. Ultimately, LED lighting demonstrates that our fabricated materials suit practical applications.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multidimensional manganese-metal organic frameworks (Mn-MOF) are synthesized using 1,2,4,5-Benzene tetracarboxylic acid (BTTC) at various temperatures (100–160 °C). The Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques successfully confirm the formation of Mn-MOF. Among the various temperatures, the Mn-MOF synthesized at 140 °C (Mn-MOF@BTTC-140) is remarkable because it has excellent crystallinity and a unique morphology, i.e., woodchips-like structure. The synthesized Mn-MOF@BTTC materials are used in supercapacitor applications. In comparison to all materials, Mn-MOF@BTTC-140 revealed the maximum specific capacitance (Cs) of 627 F g-1 @ 1 A g-1, and it displayed 91 % capacitance retention even after the 6000 cycles at a current density of 10 A g-1. Furthermore, the supercapacitor device (SD) constructed using carbon nanofibers (CNF) as the negative electrode and Mn-MOF@BTTC-140 as the positive electrode delivered an energy density of 25 W h kg-1 at a power density of 532 W kg-1. Ultimately, LED lighting demonstrates that our fabricated materials suit practical applications.
使用 1,2,4,5-苯四甲酸(BTTC)在不同温度(100-160 °C)下合成了多维锰金属有机框架(Mn-MOF)。傅立叶变换红外光谱(FT-IR)和 X 射线衍射(XRD)技术成功证实了锰-MOF 的形成。在不同温度下合成的 Mn-MOF(Mn-MOF@BTTC-140)具有优异的结晶度和独特的形态,即类似木片的结构,因而引人注目。合成的 Mn-MOF@BTTC 材料可用于超级电容器。与所有材料相比,Mn-MOF@BTTC-140 的最大比电容(Cs)为 627 F g-1 @ 1 A g-1,即使在 10 A g-1 的电流密度下循环 6000 次,其电容保持率仍高达 91%。此外,以纳米碳纤维(CNF)为负极、Mn-MOF@BTTC-140 为正极构建的超级电容器装置(SD)在功率密度为 532 W kg-1 时,能量密度达到 25 W h kg-1。最终,LED 照明证明了我们制造的材料适合实际应用。