Mostafa Dadashi Firouzjaei , Jonathan Clayton , Hesam Jafarian , Ahmad Arabi Shamsabadi , Anupma Thakur , Rilyn Todd , Srinivasa Kartik Nemani , Mohtada Sadrzadeh , Mark Elliott , Babak Anasori , Leigh Terry
{"title":"A perspective on MXene-enhanced biofiltration-membrane water reuse treatment systems: A review and experimental validation","authors":"Mostafa Dadashi Firouzjaei , Jonathan Clayton , Hesam Jafarian , Ahmad Arabi Shamsabadi , Anupma Thakur , Rilyn Todd , Srinivasa Kartik Nemani , Mohtada Sadrzadeh , Mark Elliott , Babak Anasori , Leigh Terry","doi":"10.1016/j.desal.2024.118198","DOIUrl":null,"url":null,"abstract":"<div><div>As the demand for sustainable and efficient water treatment solutions grows, the integration of advanced nanomaterials has become a focal point in enhancing membrane technologies. The purpose of this review is to provide a comprehensive and critical analysis of the current state of research on Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXenes, highlighting their unique properties, the challenges they address, and the potential they hold for MXene-enhanced biofiltration-membrane systems. The perspective systematically examines how Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXenes, with their exceptional electrical conductivity, hydrophilicity, and tunable surface chemistry, can be integrated into biofiltration-membrane systems to improve key performance metrics such as water flux, contaminant rejection, and fouling resistance. Various processes, including biofiltration, adsorption, and nanofiltration, are discussed, where Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXenes have been shown to have a potential application. In addition to synthesizing existing literature, experimental validations are presented that demonstrate how MXene incorporation can alter membrane morphology and structure, leading to improved antibacterial properties and enhanced overall performance. These findings underscore the transformative potential of Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXenes in developing next-generation biofiltration-membrane technologies that are not only more efficient but also more sustainable. Through this perspective, the key challenges that remain, such as cost implications and long-term stability, are identified, and future research directions are proposed to address these issues. This in-depth analysis highlights the critical role MXenes can play in advancing water treatment technologies, particularly in the context of water reuse, and encourages further interdisciplinary research in this rapidly evolving field.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118198"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009093","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As the demand for sustainable and efficient water treatment solutions grows, the integration of advanced nanomaterials has become a focal point in enhancing membrane technologies. The purpose of this review is to provide a comprehensive and critical analysis of the current state of research on Ti3C2Tx MXenes, highlighting their unique properties, the challenges they address, and the potential they hold for MXene-enhanced biofiltration-membrane systems. The perspective systematically examines how Ti3C2Tx MXenes, with their exceptional electrical conductivity, hydrophilicity, and tunable surface chemistry, can be integrated into biofiltration-membrane systems to improve key performance metrics such as water flux, contaminant rejection, and fouling resistance. Various processes, including biofiltration, adsorption, and nanofiltration, are discussed, where Ti3C2Tx MXenes have been shown to have a potential application. In addition to synthesizing existing literature, experimental validations are presented that demonstrate how MXene incorporation can alter membrane morphology and structure, leading to improved antibacterial properties and enhanced overall performance. These findings underscore the transformative potential of Ti3C2Tx MXenes in developing next-generation biofiltration-membrane technologies that are not only more efficient but also more sustainable. Through this perspective, the key challenges that remain, such as cost implications and long-term stability, are identified, and future research directions are proposed to address these issues. This in-depth analysis highlights the critical role MXenes can play in advancing water treatment technologies, particularly in the context of water reuse, and encourages further interdisciplinary research in this rapidly evolving field.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.