{"title":"Rapid evaluating caking tendency of nonspherical crystals by developing a shape-based crystal bridge growth model","authors":"","doi":"10.1016/j.partic.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Crystal caking is a decisive factor affecting the quality of high-end fine chemicals, whereas lack of shape-to-caking understanding results in considerable waste of time, severely delaying high-end fine chemical development. On this basis, a morphology-based caking evaluation model is developed with 74% and 96% time savings compared to previous modeling and non-modeling experiments, respectively, while guaranteeing superior accuracy. The crystal morphology is expressed as a function of the aspect ratio and the particle size distribution. The quantitative relationships between these parameters and the caking tendency are deduced, firstly achieving morphology anti-caking criterion establishment. For D-allulose crystals, considering humidity, and particle size, an aspect ratio is below 3 is the standard for combating caking, which has not been reported previously. Herein, the specific effect of crystal morphology on caking behavior is quantitatively described. The knowledge obtained can be applied to rapidly and quantitatively design anti-caking storage systems for products in warehouses.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002037","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal caking is a decisive factor affecting the quality of high-end fine chemicals, whereas lack of shape-to-caking understanding results in considerable waste of time, severely delaying high-end fine chemical development. On this basis, a morphology-based caking evaluation model is developed with 74% and 96% time savings compared to previous modeling and non-modeling experiments, respectively, while guaranteeing superior accuracy. The crystal morphology is expressed as a function of the aspect ratio and the particle size distribution. The quantitative relationships between these parameters and the caking tendency are deduced, firstly achieving morphology anti-caking criterion establishment. For D-allulose crystals, considering humidity, and particle size, an aspect ratio is below 3 is the standard for combating caking, which has not been reported previously. Herein, the specific effect of crystal morphology on caking behavior is quantitatively described. The knowledge obtained can be applied to rapidly and quantitatively design anti-caking storage systems for products in warehouses.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.