Husnain Ali , Rizwan Safdar , Muhammad Hammad Rasool , Hirra Anjum , Yuanqiang Zhou , Yuan Yao , Le Yao , Furong Gao
{"title":"Advance industrial monitoring of physio-chemical processes using novel integrated machine learning approach","authors":"Husnain Ali , Rizwan Safdar , Muhammad Hammad Rasool , Hirra Anjum , Yuanqiang Zhou , Yuan Yao , Le Yao , Furong Gao","doi":"10.1016/j.jii.2024.100709","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid transition of Industry 4.0 to 5.0, modern industrial physio-chemical processes are characterized by two critical challenges: process safety and the quality of the final product. Traditional industrial monitoring methods have low reliability in accuracy and robustness, and they are inefficiently providing satisfactory results. This paper introduces a novel integration technique that employs machine learning (ML) to tackle the challenges associated with real industrial monitoring in physical and industrial processes. The proposed framework integrates distributed canonical correlation analysis - R-vine copula (DCCA-RVC), global local preserving projection (GLPP), and 2-Dimensional Deng information entropy (2-DDE). The framework's ability and productivity are assessed utilizing existing approaches such as wavelet-PCA, MRSAE, and DALSTM-AE and the new proposed novel integrated machine learning-based (DCCA-RVC) approach as benchmarks for model performance. The proposed novel approach has been validated by testing it on the ethanol-water system distillation column (DC) and Tennessee Eastman Process (TEP), utilizing it as actual industrial benchmarks. The results demonstrate that the novel integration ML-technique (DCCA-RVC) T<sub>2</sub><sup>2</sup> – GLP monitoring graphs for the fault class type 1 in the distillation column showed a (FAR) of 0 %, a (FDR) of 100 %, a precision of 100 %, F1-score of 100 % and an accuracy of 100 %. However, for the TEP process failure event 13, the (FAR) was 0 %, the (FDR) was 99 %, the accuracy was 100 %, the F1-score was 99.5 %, and the accuracy was 99.5 %.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100709"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001523","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid transition of Industry 4.0 to 5.0, modern industrial physio-chemical processes are characterized by two critical challenges: process safety and the quality of the final product. Traditional industrial monitoring methods have low reliability in accuracy and robustness, and they are inefficiently providing satisfactory results. This paper introduces a novel integration technique that employs machine learning (ML) to tackle the challenges associated with real industrial monitoring in physical and industrial processes. The proposed framework integrates distributed canonical correlation analysis - R-vine copula (DCCA-RVC), global local preserving projection (GLPP), and 2-Dimensional Deng information entropy (2-DDE). The framework's ability and productivity are assessed utilizing existing approaches such as wavelet-PCA, MRSAE, and DALSTM-AE and the new proposed novel integrated machine learning-based (DCCA-RVC) approach as benchmarks for model performance. The proposed novel approach has been validated by testing it on the ethanol-water system distillation column (DC) and Tennessee Eastman Process (TEP), utilizing it as actual industrial benchmarks. The results demonstrate that the novel integration ML-technique (DCCA-RVC) T22 – GLP monitoring graphs for the fault class type 1 in the distillation column showed a (FAR) of 0 %, a (FDR) of 100 %, a precision of 100 %, F1-score of 100 % and an accuracy of 100 %. However, for the TEP process failure event 13, the (FAR) was 0 %, the (FDR) was 99 %, the accuracy was 100 %, the F1-score was 99.5 %, and the accuracy was 99.5 %.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.