Preparation and thermal stability research of oxalic acid dihydrate-glutaric acid/PAMPS phase change gel for solar thermal energy utilization

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-10-19 DOI:10.1016/j.solmat.2024.113219
Sili Zhou , Wenbo Zhang , Wenhui Yuan , Xuenong Gao , Ziye Ling , Xiaoming Fang
{"title":"Preparation and thermal stability research of oxalic acid dihydrate-glutaric acid/PAMPS phase change gel for solar thermal energy utilization","authors":"Sili Zhou ,&nbsp;Wenbo Zhang ,&nbsp;Wenhui Yuan ,&nbsp;Xuenong Gao ,&nbsp;Ziye Ling ,&nbsp;Xiaoming Fang","doi":"10.1016/j.solmat.2024.113219","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal energy storage technology based on phase change materials (PCMs) can address the temporal and spatial mismatches in solar thermal energy conversion, thereby enhancing solar energy utilization efficiency. However, the liquid flow and poor thermal reliability of PCMs limit their large-scale application in solar thermal systems. In this study, we employ a simple “one-pot method” to prepare a form-stable and thermally reliable oxalic acid dihydrate-glutaric acid/poly 2-Acrylamido-2-methyl-1-propanesulfonic acid (OAD-GA/PAMPS) phase change gel. The OAD-GA/PAMPS phase change gel melts at 64.5 °C with a phase change enthalpy of 193.6 kJ/kg, the tensile strength is 7.707 MPa, and the compressive strength is 16.940 MPa. By incorporating 5 wt% BN particles, the thermal conductivity of OAD-GA/PAMPS phase change gel reaches 0.63 W/(m·K). After 200 heating-cooling cycles, the phase change temperature of the OAD-GA/PAMPS phase change gel remains nearly unchanged, and the phase change enthalpy decreases by only 5.7 %. The photo-thermal conversion efficiency of the OAD-GA/PAMPS phase change gel is 82.7 %. The high thermal reliability and photo-thermal conversion efficiency of the OAD-GA/PAMPS phase change gel makes it suitable for solar thermal energy storage applications.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113219"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005312","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal energy storage technology based on phase change materials (PCMs) can address the temporal and spatial mismatches in solar thermal energy conversion, thereby enhancing solar energy utilization efficiency. However, the liquid flow and poor thermal reliability of PCMs limit their large-scale application in solar thermal systems. In this study, we employ a simple “one-pot method” to prepare a form-stable and thermally reliable oxalic acid dihydrate-glutaric acid/poly 2-Acrylamido-2-methyl-1-propanesulfonic acid (OAD-GA/PAMPS) phase change gel. The OAD-GA/PAMPS phase change gel melts at 64.5 °C with a phase change enthalpy of 193.6 kJ/kg, the tensile strength is 7.707 MPa, and the compressive strength is 16.940 MPa. By incorporating 5 wt% BN particles, the thermal conductivity of OAD-GA/PAMPS phase change gel reaches 0.63 W/(m·K). After 200 heating-cooling cycles, the phase change temperature of the OAD-GA/PAMPS phase change gel remains nearly unchanged, and the phase change enthalpy decreases by only 5.7 %. The photo-thermal conversion efficiency of the OAD-GA/PAMPS phase change gel is 82.7 %. The high thermal reliability and photo-thermal conversion efficiency of the OAD-GA/PAMPS phase change gel makes it suitable for solar thermal energy storage applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能热利用草酸二水合物-戊二酸/PAMPS 相变凝胶的制备与热稳定性研究
基于相变材料(PCM)的热能储存技术可以解决太阳能热能转换中的时空不匹配问题,从而提高太阳能的利用效率。然而,PCMs 的液态流动性和较差的热可靠性限制了其在太阳能热系统中的大规模应用。在本研究中,我们采用简单的 "一锅法 "制备了形态稳定、热可靠的草酸二水合物-戊二酸/聚 2-丙烯酰胺基-2-甲基-1-丙磺酸(OAD-GA/PAMPS)相变凝胶。OAD-GA/PAMPS 相变凝胶的熔点为 64.5 ℃,相变焓为 193.6 kJ/kg,抗拉强度为 7.707 MPa,抗压强度为 16.940 MPa。加入 5 wt% 的 BN 颗粒后,OAD-GA/PAMPS 相变凝胶的导热系数达到 0.63 W/(m-K)。经过 200 次加热-冷却循环后,OAD-GA/PAMPS 相变凝胶的相变温度几乎保持不变,相变焓仅降低了 5.7%。OAD-GA/PAMPS 相变凝胶的光热转换效率为 82.7%。OAD-GA/PAMPS 相变凝胶的高热稳定性和光热转换效率使其适用于太阳能热储应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Oxide-nitride nanolayer stacks for enhanced passivation of p-type surfaces in silicon solar cells Accurately quantifying the recombination pathways unique in back contact solar cells Analyzing the effectiveness of various coatings to mitigate photovoltaic modules soiling in desert climate Solar energy harvester based on polarization insensitive and wide angle stable UWB absorber for UV, visible and IR frequency range Experimental evaluation of photovoltaic thermal (PVT) system using a modular heat collector with flat back shape fins, pipe, nanofluids and phase change material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1