Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole
Somayeh Tajik , Hadi Beitollahi , Fariba Garkani Nejad
{"title":"Novel and simple electrochemical sensing platform based on polypyrrole nanotubes/ZIF-67 nanocomposite/screen printed graphite electrode for sensitive determination of metronidazole","authors":"Somayeh Tajik , Hadi Beitollahi , Fariba Garkani Nejad","doi":"10.1016/j.elecom.2024.107824","DOIUrl":null,"url":null,"abstract":"<div><div>Here, a simple, fast, and sensitive voltammetric sensor based on screen printed graphite electrode (SPGE) modified with polypyrrole nanotubes/zeolitic imidazolate framework-67 (PPy NTs/ZIF-67) nanocomposite is introduced for the metronidazole (MNZ) determination. The PPy NTs/ZIF-67 nanocomposite was synthesized and characterized by using X-ray diffraction (XRD) spectroscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques. The developed sensor based on PPy NTs-ZIF-67 nanocomposite modified SPGE shows an obvious reduction peak at −650 mV for MNZ, mainly due to the synergistic effects of the ZIF-67 and PPy NTs. Differential pulse voltammetry (DPV) was found to be the most suitable method for MNZ detection, showing a linear dynamic range of 0.01–500.0 µM and a low limit of detection (LOD) of 0.004 µM. In investigating the practicability, the PPy NTs/ZIF-67/SPGE sensor demonstrated efficient practicability with satisfactory recoveries (97.1 % to 103.5 %) and low relative standard deviation (RSD) values of 1.8–3.6 % for MNZ determination in MNZ tablets and urine samples.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107824"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400167X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Here, a simple, fast, and sensitive voltammetric sensor based on screen printed graphite electrode (SPGE) modified with polypyrrole nanotubes/zeolitic imidazolate framework-67 (PPy NTs/ZIF-67) nanocomposite is introduced for the metronidazole (MNZ) determination. The PPy NTs/ZIF-67 nanocomposite was synthesized and characterized by using X-ray diffraction (XRD) spectroscopy, field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques. The developed sensor based on PPy NTs-ZIF-67 nanocomposite modified SPGE shows an obvious reduction peak at −650 mV for MNZ, mainly due to the synergistic effects of the ZIF-67 and PPy NTs. Differential pulse voltammetry (DPV) was found to be the most suitable method for MNZ detection, showing a linear dynamic range of 0.01–500.0 µM and a low limit of detection (LOD) of 0.004 µM. In investigating the practicability, the PPy NTs/ZIF-67/SPGE sensor demonstrated efficient practicability with satisfactory recoveries (97.1 % to 103.5 %) and low relative standard deviation (RSD) values of 1.8–3.6 % for MNZ determination in MNZ tablets and urine samples.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.