Basharat Ahmad , Zhaoliang Wu , Yongfeng Huang , Sadaqat Ur Rehman
{"title":"Enhancing the security in IoT and IIoT networks: An intrusion detection scheme leveraging deep transfer learning","authors":"Basharat Ahmad , Zhaoliang Wu , Yongfeng Huang , Sadaqat Ur Rehman","doi":"10.1016/j.knosys.2024.112614","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) networks, which are defined by their interconnected devices and data streams are an expanding attack surface for cyber adversaries. Industrial Internet of Things (IIoT) is a subset of IoT and has significant importance in-terms of security. Robust intrusion detection systems (IDS) are essential for protecting these critical infrastructures. Our research suggests a novel approach to the detection of anomalies in IoT and IIoT networks that leverages the capabilities of deep transfer learning. Our methodology begins with the EdgeIIoT dataset, which serves as the basis for our data analysis. We convert the data into an appropriate image format to enable Convolutional Neural Network (CNN)-based processing. The hyper-parameters of individual machine learning models are subsequently optimized using a Random Search algorithm. This optimization phase optimizes the performance of each model by modifying the hyper-parameters that are unique to the learning algorithms. The performance of each model is meticulously assessed subsequent to hyper-parameter optimization. The top-performing models are subsequently, strategically selected and combined using the ensemble technique. The IDS scheme’s overall detection accuracy and generalizability are improved by the integration of strengths from multiple models. The proposed scheme demonstrates significant effectiveness in identifying a broad spectrum of attacks, encompassing a total of 14 distinct attack types. This comprehensive detection capability contributes to a more secure and resilient IoT ecosystem. Furthermore, application of quantization to our best models reduces resource utilization significantly without compromising accuracy.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124012486","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) networks, which are defined by their interconnected devices and data streams are an expanding attack surface for cyber adversaries. Industrial Internet of Things (IIoT) is a subset of IoT and has significant importance in-terms of security. Robust intrusion detection systems (IDS) are essential for protecting these critical infrastructures. Our research suggests a novel approach to the detection of anomalies in IoT and IIoT networks that leverages the capabilities of deep transfer learning. Our methodology begins with the EdgeIIoT dataset, which serves as the basis for our data analysis. We convert the data into an appropriate image format to enable Convolutional Neural Network (CNN)-based processing. The hyper-parameters of individual machine learning models are subsequently optimized using a Random Search algorithm. This optimization phase optimizes the performance of each model by modifying the hyper-parameters that are unique to the learning algorithms. The performance of each model is meticulously assessed subsequent to hyper-parameter optimization. The top-performing models are subsequently, strategically selected and combined using the ensemble technique. The IDS scheme’s overall detection accuracy and generalizability are improved by the integration of strengths from multiple models. The proposed scheme demonstrates significant effectiveness in identifying a broad spectrum of attacks, encompassing a total of 14 distinct attack types. This comprehensive detection capability contributes to a more secure and resilient IoT ecosystem. Furthermore, application of quantization to our best models reduces resource utilization significantly without compromising accuracy.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.